DOI QR코드

DOI QR Code

X-대역 레이더용 SSPA 모듈 설계 및 제작

Design and fabrication of SSPA module in X-band for Radar

  • 양성수 (동신대학교 정보통신공학과)
  • Yang, Seong-Soo (Dept. Information & Communication Engineering, DongShin University)
  • 투고 : 2018.09.09
  • 심사 : 2018.10.15
  • 발행 : 2018.10.31

초록

본 논문에서는 GaN MMIC를 활용하여 X-band 레이더용 SSPA모듈을 설계 및 제작하였다. SSPA의 구동 증폭기 단은 Gain Loss를 감안하여 GaN MMIC를 2단으로 구성하였다. 그리고 고출력 SSPA 모듈 구성을 위해 전력증폭단을 4단으로 설계함에 따라 전력분배기와 전력합성기는 4way 방식으로 설계하였다. 제작된 전력 분배기는 -3.0dB 이상의 손실을 나타내었으며, 전력합성기는 -0.2dB의 입출력 손실과 각 포트 간 위상차는 평균 $2^{\circ}$로 양호한 특성을 보이고 있다. 제작한 SSPA모듈 실험 측정 결과 9~10GHz 주파수 대역에서의 Gain은 48.0dB 이상인 것을 확인하였으며, P(sat)=88.3W (49.46dBm) 이상, PAE=30.3% 이상임을 확인하였다. 본 논문에서 제작된 X-Band SSPA 모듈 성능 확인과 전력분배기/합성기 개선을 통해 향후 SSPA모듈에 대한 RF성능 개선에 많이 활용될 수 있을 것이다.

In this paper, SSPA Module for X-band radar was designed and fabricated by using GaN MMIC. For the purpose of configuring the high power SSPA module, the drive steamers are composed of 2-layers of GaN MMIC with considering Gain Loss. In addition, the power divider and power combiner used a 4way approach by designing a 4-stage power amplifier. The power divider has a loss of -3.0dB or more, and the I/O has a loss of -0.2dB in the power combiner and the phase difference between the ports are good at $2^{\circ}$ on average. The fabricated SSPA module got the measurement results that satisfy a Gain 48dB, P(sat)=88.3W(49.46 dBm), PAE=30.3% or more efficiency in condition of frequency range 9~10GHz. The fabricated X-Band SSPA module can be applied in RF performance improvement for SSPA module whit improvement of power divider/combiner.

키워드

참고문헌

  1. U. Mishra, P. Parikh, and Y. Wu, "AlGaN/ GaN HEMTs-an overview of device operation and applications," In Pro. IEEE, vol. 90, no. 6, June 2002, pp. 1022-1031. https://doi.org/10.1109/JPROC.2002.1021567
  2. B. Ivan, "Practical design comparison between highpower GaAs MESFET and GaN HEMT," High Frequency Electronics, vol. 6, no. 10, Oct. 2007, pp. 18-28.
  3. W. Melvin and J. Scheer, Principles of Modern Radar : Advanced Techniques. Georgia : SciTech Publishing, 2012.
  4. S. Allen, R. Sadler, T. Alcom, J. Palmour, and C. Carter, "Silicon carbide MESFETs for high-power S-band application," IEEE Int. Symp. Digest, vol. 1, June 1997, pp. 57-60.
  5. G. Kim, "Design and Implementation of Local Oscillator for X-Band Radar," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 11, 2014, pp.1215-1220. https://doi.org/10.13067/JKIECS.2014.9.11.1215
  6. A. Mizuhara, "Bandwidth and group delay extension for an X-band 250 kW C W klystron for JPL/NASA deep space radar," IEEE Int. Vacuum Electronics Conf., Monterey, USA, Apr. 2004, pp. 77-88.
  7. R. Dionisio and G. Andriolo, "High power X-band helix TWT for airbone radar applications," IEEE Int. Vacuum Electronics Conf., Monterey, USA, Apr. 2002, pp. 357-358.
  8. Merrill I. Skolnik, Introduction to Radar System, 3th Ed. New York: McGraw-Hill, 2001.
  9. M. Hanczor and M. Kumar, "12-kW S-band solid-state transmitter for modern radar system," IEEE Int. Micro. Symp. Digest, vol. 41, no. 12, Dec. 1993, pp. 2237-2242.
  10. M. Kim, Y. Jang, and Y. Rhee, "An implementation of 60W-band Cascade SSPA for Marine Radar System," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 1, 2014, pp.425-431.