DOI QR코드

DOI QR Code

초음파 추출공정을 이용한 닥나무로부터 항산화성분의 추출공정 최적화

Statistical Optimization of Antioxidant Extraction from Broussonetia kazinoki Using Ultrasound-assisted Extraction

  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University) ;
  • Park, Bo Ra (Department of Chemical Engineering, Dankook University) ;
  • Yoo, Bong-Ho (College of Engineering, Dankook University)
  • 투고 : 2018.06.01
  • 심사 : 2018.07.04
  • 발행 : 2018.10.10

초록

본 연구에서는 초음파 용매추출공정을 이용하여 닥나무로부터 항산화성분을 추출하고, 중심합성계획모델을 이용하여 추출공정을 최적화하였다. 중심합성계획모델의 반응치로는 추출수율과 DPPH 라디칼소거활성을 설정하고, 독립변수인 추출시간, 주정/초순수 부피비, 초음파 조사세기에 따른 주효과도와 교호효과도를 해석하였다. 추출수율과 DPPH 라디칼소거활성 모두 계량인자의 주효과도와 교호효과도를 모두 고려하였을 때 가장 큰 영향을 미치는 인자는 주정/초순수 부피비이었다. 반응표면분석법을 이용하여 추출공정의 최적화과정을 수행한 결과 최적추출조건은 추출시간(19.92 min), 주정/초순수 부피비(54.23 vol%), 초음파 조사세기(557.65 W)로 나타났다. 이 조건으로부터 예상되는 반응치의 값은 추출수율(38.93 wt%), DPPH 라디칼소거활성(55.33%)으로 나타났다.

In this study, the antioxidant was extracted from Broussonetia kazinokii using ultrasound-assisted extraction (UAE) and optimized by using a response surface methodology. The response value of the central composite design model establishes the extraction yield and the DPPH radical scavenging activity. The extraction time and temperature and volume ratio of ethanol/ultrapure water were selected as quantitative factors. When considering both the main and interaction effects, the factor having the greatest influence on the extraction yield and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was the volume ratio of ethanol/ultrapure water. The results of optimal extraction conditions were the extraction time (19.92 min), volume ratio of ethanol/ultrapure water (54.23%), and ultrasonic irradiation power (557.65 W). We could also obtained expected results of the yield = 38.93 wt% and DPPH radical scavenging activity = 55.33% under these conditions.

키워드

참고문헌

  1. M.-Y. Lee, M.-S. Yoo, Y.-J. Whang, Y.-J. Jin, M.-H. Hong, and Y.-H. Pyo, Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruits peels, Korean J. Food Sci. Technol., 44(5), 540-544 (2012). https://doi.org/10.9721/KJFST.2012.44.5.540
  2. I. K. Hong, B. R. Park, G. S. Jeon, and S. B. Lee, Extraction of flavonoid components from persimmon leaf, thistle and new green, Appl. Chem. Eng., 27(3), 276-279 (2016). https://doi.org/10.14478/ACE.2016.1027
  3. J.-H. Ryu, H. Ahn, and H. J. Lee, Inhibition of nitric oxide production on LPS-activated macrophages by kazinol B from Broussonetia kaziniki, Fitoterapia, 74(4), 350-354 (2003). https://doi.org/10.1016/S0367-326X(03)00062-5
  4. A. Y. Kim, C. G. Lee, D. Y. Lee, H. Li, R. O. Jeon, J.-H. Ryu, and S. G. Kim, Enhanced antioxidant effect of prenylated polyphenols as Fyn inhibitor, Free Radic. Biol. Med., 53(5), 1198-1208 (2012). https://doi.org/10.1016/j.freeradbiomed.2012.06.039
  5. S. Yavari, A. Malakahmad, N. B. Sapari, and S. Yavari, Sorption properties optimization of agricultural wastes-derived biochars using response surface methodology, Process Saf. Environ. Prot., 109, 509-519 (2017). https://doi.org/10.1016/j.psep.2017.05.002
  6. A. A. D'Archivio and M. A. Maggi, Investigation by response surface methodology of the combined effect of pH and composition of water-methanol mixtures on the stability of curcuminoids, Food Chem., 219, 414-418 (2017). https://doi.org/10.1016/j.foodchem.2016.09.167
  7. G. I. Danmaliki, T. A. Saleh, and A. A. Shamsuddeen, Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon, J. Ind. Eng. Chem., 313, 993-1003 (2017).
  8. P. E. Ohale, C. F. Uzoh, and O. D. Onukwuli, Optimal factor evaluation for the dissolution of alumina from Azaraegbelu clay in acid solution using RSM and ANN comparative analysis, S. Afr. J. Chem. Eng., 24, 43-54 (2017).
  9. P. Verm and M. P. Sharm, Comparative analysis of effect of methanol and ethanol on Karanja biodiesel production and its optimisation, Fuel, 180, 164-174 (2016). https://doi.org/10.1016/j.fuel.2016.04.035
  10. S.-M. Huang, C.-H. Kuo, C.-A. Chen, Y.-C. Liu, and C.-J. Shieh, RSM and ANN modeling-based optimization approach for the development of ultrasound-assisted liposome encapsulation of piceid, Ultrason. Sonochem., 36, 112-122 (2017). https://doi.org/10.1016/j.ultsonch.2016.11.016
  11. Y. Lu and L. Y. Foo, Antioxidant and radical scavenging activities of polyphenols apple pomace, Food Chem., 68, 81-85 (2000). https://doi.org/10.1016/S0308-8146(99)00167-3
  12. I. Hamlaoui, R. Bencheraiet, R. Bensegueni, and M. Bencharif, Experimental and theoretical study on DPPH radical scavenging mechanism of some chalcone quinoline derivatives, J. Mol. Struct., 1156, 385-389 (2018). https://doi.org/10.1016/j.molstruc.2017.11.118
  13. M. Zamani, A. M. Delfani, and M. Jabbari, Scavenging performance and antioxidant activity of $\gamma$-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies, Spectrochim. Acta A, 201, 288-299 (2018). https://doi.org/10.1016/j.saa.2018.05.004
  14. S. A. Park, J. H. Ha, and S. N. Park, Antioxidative activity and component analysis of Broussonetia kazinoki SIEB extracts, Appl. Chem. Eng., 24(2), 177-183 (2013).
  15. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199-1200 (1958). https://doi.org/10.1038/1811199a0
  16. H.-J. Lee, J.-H. Park, D.-I. Jang, and J.-H. Ryu, Antioxidant components from Broussonetia kazinoki, Yakhak Hoeji, 41(4), 439-443 (1997).