DOI QR코드

DOI QR Code

Tensile Characteristics of High-Ductile Cementless Composite According to Aspect Ratio of Fiber

섬유의 형상비에 따른 고연성 무시멘트 복합재료의 인장특성

  • Choi, Jeong-Il (School of Architecture, Chonnam National University) ;
  • Park, Se Eon (School of Architecture, Chonnam National University) ;
  • Kang, Su-Tae (Department of Civil Engineering, Daegu University) ;
  • Oh, Sungwoo (Construction Technology Research Center, Korea Conformity Laboratories) ;
  • Lee, Bang Yeon (School of Architecture, Chonnam National University)
  • 최정일 (전남대학교 건축학부) ;
  • 박세언 (전남대학교 건축학부) ;
  • 강수태 (대구대학교 건설시스템공학과) ;
  • 오성우 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 이방연 (전남대학교 건축학부)
  • Received : 2018.08.30
  • Accepted : 2018.09.16
  • Published : 2018.09.30

Abstract

The purpose of this study is to investigate experimentally the effects of aspect ratio of polyethylene fiber on the compressive strength and tensile behavior of alkali-activated cementless composite. Two mixtures were determined according to aspect ratio values of polyethylene fibers, and the compressive strength and tension tests were performed. Test results showed that the effect of aspect ratio of fiber on the compressive strength was negligible and the tensile strength, ductility, and number of cracks of the mixture including the fiber with high aspect ratio were higher than those of the mixture including the fiber with low aspect ratio. On the other hand, the crack spacing and crack width were low in the mixture including the fiber with high aspect ratio.

이 연구의 목적은 폴리에틸렌 섬유의 형상비에 따른 알칼리활성 무시멘트 복합재료의 압축강도와 인장거동을 실험적으로 조사하는 것이다. 이를 위하여 섬유의 형상비에 따라 두 가지 배합을 결정하였고, 압축강도를 측정하고 인장실험을 수행하였다. 실험결과 섬유의 형상비에 따른 압축강도의 영향은 거의 나타나지 않은 반면 인장거동은 큰 차이가 발생하였다. 형상비가 높은 섬유를 사용한 배합은 형상비가 낮은 섬유를 사용한 배합에 비하여 강도, 변형성능, 균열개수가 크게 나타났다. 반면에 균열간격과 균열폭은 높은 형상비를 갖는 섬유를 함유한 배합에서 작게 나타났다.

Keywords

References

  1. ACI Committee 544, Report on Fiber Reinforced Concrete, 544, 1R-96, American Concrete Institute.
  2. Choi, J.I., Lee, B.Y., Ranade, R., Li, V.C., Lee, Y. (2016). Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite, Cement and Concrete Composites, 70, 153-158. https://doi.org/10.1016/j.cemconcomp.2016.04.002
  3. JSCE (2008). Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Concrete Engineering Series.
  4. Kanda, T., Li, V.C. (2006). Practical design criteria for saturated pseudo strain hardening behavior in ECC, Journal of Advanced Concrete Technology, 4(1), 59-72. https://doi.org/10.3151/jact.4.59
  5. Kim, Y.Y., Kong, H.J., Li, V.C. (2003). Design of engineered cementitious composite(ECC) suitable for wet-mix shotcreting, ACI Materials Journal, 100(6), 511-518.
  6. Lee, B.Y., Cho, C.G., Lim, H.J., Song, J.K., Yang, K.H., Li, V.C. (2012). Strain hardening fiber reinforced alkali-activated mortar-A feasibility study. Construction and Building Materials, 37, 15-20. https://doi.org/10.1016/j.conbuildmat.2012.06.007
  7. Li, M., Li, V.C. (2013). Rheology, fiber dispersion, and robust properties of engineered cementitious composites, Materials and Structure, 46(3), 405-420. https://doi.org/10.1617/s11527-012-9909-z
  8. Maalej, M., Li, V.C. (1994). Flexural/tensile‐strength ratio in engineered cementitious composites, ASCE Journal of Materials in Civil Engineering, 6(4), 513-528. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:4(513)
  9. Malhotra, V.M. (2001). Introduction: sustainable development and concrete technology, Concrete International, 24(7), 22.
  10. Mindess, S., Young, J.F., Darwin, D. (2003). Concrete, Prentice-Hall Englewood Cliffs, NJ, 317.
  11. Ohno, M., Li, V.C. (2014). A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites, Construction and Building Materials, 57, 163-168. https://doi.org/10.1016/j.conbuildmat.2014.02.005
  12. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S. (2008). Alkali-Activated Binders: A Review. Part 2. about Materials and Binder Manufacture, Journal of the Construction and Building Materials, 22(7), 1315-1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019
  13. Roy, D.M. (1999) Alkali-activated cements: opportunities and challenges, Cement and Concrete Research, 29(2), 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3
  14. Shi, C., Roy, D., Krivenko, P.V. (2006). Alkali-Activated Cements and Concrete, Taylor and Francis.
  15. Van Damme, H. (2018). Concrete material science: past, present, and future innovations, Cement and Concrete Research, 112, 5-24 https://doi.org/10.1016/j.cemconres.2018.05.002
  16. Yang, E.H., Sahmaran, M., Yang, Y., Li, V.C. (2009). Rheological control in the production of engineered cementitious composites, ACI Materials Journal, 106(4), 357-366.