DOI QR코드

DOI QR Code

STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS WITH INVOLUTION IN NON-ARCHIMEDEAN SPACES

  • Kim, Chang Il (Department of Mathematics Education, Dankook University) ;
  • Yun, Yong Sik (Department of Mathematics and Research Institute for Basic Sciences, Jeju National University)
  • 투고 : 2018.07.03
  • 심사 : 2018.09.27
  • 발행 : 2018.09.30

초록

In this paper, we consider the generalized Hyers-Ulam stability for the following additive-quadratic functional equation with involution $f(x+2y)-f(2x+y)+f(x+y)+f({\sigma}(x)+y)+f(x)-4f(y)-f({\sigma}(y))=0$ in non-Archimedean spaces.

키워드

참고문헌

  1. T. Aoki, On the stability of the linear transformation in Banach space, J. Math. Soc. Japan. 2(1950), 64-66. https://doi.org/10.2969/jmsj/00210064
  2. B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12(2007), 247-262.
  3. B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the Hyers-Ulam stability of approximately pexider mappings, Math. Ineqal. Appl. 11(2008), 805-818.
  4. P.W.Cholewa, Remarkes on the stability of functional equations, Aequationes Math., 27(1984), 76-86. https://doi.org/10.1007/BF02192660
  5. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62(1992), 59-64. https://doi.org/10.1007/BF02941618
  6. J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, 74(1968), 305309. https://doi.org/10.1090/S0002-9904-1968-11933-0
  7. P. Gavruta, A generalization of the Hyer-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  8. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27(1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  9. S. M. Jung, Z. H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. 2008.
  10. Th. M. Rassias, On the stability of the linear mapping in Banach sapces, Proc. Amer. Math. Sco. 72(1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  11. F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129. https://doi.org/10.1007/BF02924890
  12. H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144-172. https://doi.org/10.1007/BF02755452
  13. S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.