References
- A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funt. Anal. 14, (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
- H. Berestycki, L. Capffarelli and L. Nirenberg, Futher qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa CI. Sci. 425(1997),69-94.
- H. Brezis and E. Lieb, A relation between pointwise convergence of functionals and convergence of functions, Proc. Amer. Soc., 88 (1983), 486-490. https://doi.org/10.1090/S0002-9939-1983-0699419-3
- H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36(1983), 437-477 . https://doi.org/10.1002/cpa.3160360405
- M. Crandall and P. Rabiowitz, Bifurcation, Perturbation of simple eigenvalues, and linealized stability, Arch. Rational Mech. Mech. Anal., 52(1973), 161-180. https://doi.org/10.1007/BF00282325
- L. Ekeland, Convex minimization problem, Bull. Amer. Math. Soc., (NS)1 (1976), 443-474.
- Y. Deng and Y. Li, Existence and bifurcation of positive solutions for a semilinear elliptic equation with critical exponent, J. Diff. Equa., 130 (1996), 179-200. https://doi.org/10.1006/jdeq.1996.0138
- N. Ghoussoub and C. Yuan, Multiple solutions for qusi-linear PDEs involving critical Sobolev and Hardy exponentials, Trans. Amer. Math. Soc., 352 (2000)5703-5743. https://doi.org/10.1090/S0002-9947-00-02560-5
- D. Kang, Solutions of quasilinear elliptic problem with a critical Sobolev-Hardy exponent and a Hardy-type term, J. Math. Anal. Appl., 341 (2008)464-781.
- D. Kang and Y. Deng, Multiple solutions for inhomogeneous elliptic problems involving critical Sobolev-Hardy exponentis, Nonlinear Analysis T.M.A., 60 (2005)297-753.
- D. Kang and S. Peng, Positive solutions for singular critical elliptic problems, Appl. Math. Lett., 17 (2004)411-416. https://doi.org/10.1016/S0893-9659(04)90082-1
- W.S. Kim, Multiple existence of positive global solutions parameterized nonhomogeneous elliptic equations involving critical exponents, East Asian Math. J., 30(3)(2014)335-353. https://doi.org/10.7858/eamj.2014.024
- D. Smets, Nonlinear Schrodinger equations with Hardy potentials and critical nonlearitie, Trans. Amer. Math. Soc., 357(7) (2004) 2909-2938. https://doi.org/10.1090/S0002-9947-04-03769-9
- G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pure Appl., 110 (1976). 353-372. https://doi.org/10.1007/BF02418013
- M. Willem, Minimax theorems, Birkhauser. Boston, Basel, Berlin. (1996).
- X.-P. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Diff. Equa, 92 (1991) 163-178. https://doi.org/10.1016/0022-0396(91)90045-B
- X.-P. Zhu and H.-S. Zhu, Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domain, Proc. Roy. Soc. Edinburgh , 115A(1990)301-318.