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PARAMETRIZED PERTURBATION RESULTS ON GLOBAL

POSITIVE SOLUTIONS FOR ELLIPTIC EQUATIONS

INVOLVING CRITICAL SOBOLEV-HARDY EXPONENTS

AND HARDY TEREMS

Wan Se Kim

Abstract. We establish existence and bifurcation of global positive solu-
tions for parametrized nonhomogeneous elliptic equations involving critical

Sobolev-Hardy exponents and Hardy terms. The main approach to the

problem is the variational method.

1. Introduction

In this paper, we are concerned with the multiple existence and bifurcation
of global positive solutions of the following nonhomogeneous problem:

(Pν)

 −∆u− µ u

|x|2
= |u|2

∗−2u+ νf in RN ,

u ∈ H in RN ,

where ν ∈ R+, f ∈ H−1, f ≥ 0 and f 6≡ 0 in RN .
Let N ≥ 3, 0 ≤ s < 2, 2∗(S) := 2(N − s)/(N − 2), and 2∗ = 2∗(0). We

put ||u||p =
∫
RN |u|

pdx, ||u||∞ = ess supx∈Ω|u(x)|. The space D1,2(RN ) :=

{u ∈ L2∗
(RN );∇u ∈ L2(RN )} with inner product (u, v) =

∫
RN (∇u · ∇v)dx

and the corresponding norm
(∫

RN |∇u|
2dx
)1/2

is a Hilbert space. The space

H := H1
0 (RN ) is the closure of C∞0 (RN ) by (·, ·).

By the Sobolev-Hardy inequality(see. [8]):

(N − 2)2

4

∫
RN

|u|2

|x|2
dx ≤

∫
RN
|∇u|2dx for all u ∈ D1,2(RN ).
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We note that H is a Hilbert space with the equvalent norm(cf. [9], [10]):

||u|| :=
[∫

RN

(
|∇u|2 − µ u2

|x|2

)
dx

]1/2

,

where 0 ≤ µ < µ̄ := (N − 2)2/4; µ̄ is the best Sobolev-Hardy constant. By
H−1, we denote its dual with norn || · ||∗ and by <,> the pairing of H.

It is known that the following Sobolev-Hardy inequality in [8] and [10]:Assume
that 0 ≤ s ≤ 2, 2 ≤ r ≤ 2∗(s), then there exist a constant C > 0 such that

(1.1) C

(∫
RN

|u|r

|x|s

)2/r

≤ ||u||2, ∀u ∈ H.

Let As,r to denote the best Sobolev-Hardy constant, i.e., the largest constant
C satisfying the above inequality, that is,

As,r := inf
06=u∈H

∫
RN
(
|∇u|2 − µ|u|2/|x|2

)
dx[∫

RN |u|r/|x|sdx
]2/r

In the important Sobolev-Hardy critical case where r = 2∗(s), we shall simply
denote As,2∗(s) as As.

Remark 1. We note the case: s = 0 i.e., A0 = A0,2∗ . Usually, we denote

S := inf
06=u∈D1,2

∫
RN |∇u|

2

[
∫
RN |u|2

∗ ]2/2∗

and since the above norm || · || and the usual morm are equivalent in D1,2(RN ),
we may assume that A0 by some contant works as S, so we may assume A0 = S.

In [10], we see that for ε > 0, 0 ≤ s < 2 and β =
√
µ̄− µ, the function

ωε,s(x) :=

[
2εβ2(N−s)√

µ̄

]√µ̄/(2−s)
[
|x|
√
µ̄−β

(
ε+ |x|(2−s)β/

√
µ̄
)(N−2)/(2−s)

] , 0 ≤ µ < µ̄.

solve the equation

(1.2) −∆u− µ u

|x|2
=
|u|2∗(s)−2

|x|s
u in RN \ {0}

and satisfy

(1.3) ||ωε,s||2 =

∫
RN

|ωε,s|2
∗(s)

|x|s
= A(N−s)/(2−s)

s .

Moreover, As is attained by ωε,s only on RN .
where ν ∈ R+, f ∈ H−1(RN ), f ≥ 0 and f 6≡ 0 in RN .
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Our attempt to show multiplicity of positive solutions for problem (Pµ) relies
on the Ekeland’s variational principle in [6] and the Mountain Pass Theorem in
[1].

Since our problem (Pν) posesses the critical nonlinearity and the embedding
H(RN ) ↪→ L2∗

(RN ) is not compact, in taking the opportunity of variational
structure of problem, the (PS) condition is no longer valid and so the Mountain
Pass Theorem in [1] could not be applied directly. However, we can use the
Mountain Pass Theorem without the (PS) condition in [4] to get some (PS)c
sequence of the variational functional for the second solution with c > 0.

For convenience, we omit “RN” and “dx” in integration and, throughtout
this paper, we will use the letter C to denote the natural various constants
independent of u. From now on, we put p = 2∗.

2. Existence of minimal positive solutions

As a consequence of Hardy inequality, it is ease to see:

Lemma 2.1. The operator −∆ − µ u
|x|2 is positive, has discrete spectrum and

has the maximum principle in H.

Proof. See [10] and [12].

In order to get the existence of positive solutions of (Pν), we consider the
energy functional Iν of the problem (Pν) defined by

Iν(u) :=
1

2

∫ (
|∇u|2 − µ |u|

2

|x|2

)
− 1

p

∫ (
u+
)p − ν ∫ fu, for u ∈ H.

First, we study the existence of the first solution for the problem (Pν) by
finding a local mininum for energy functional Iν . We denote

(2.1) C∗N :=
1

2

(
N

N + 2

)(N−2)/4(
4

N + 2

)
A

(N−2)/4
0 .

Lemma 2.2. Assume f ∈ H−1, f(x) ≥ 0, f(x) 6≡ 0 and ||νf ||∗ ≤ C∗N , then
there exits a positive constant R0 > 0 such that Iν(u) ≥ 0 for any u ∈ ∂B̄R0

=
{u ∈ H : ||u|| = R0}.

Proof. We consider the function h(t) : [0,+∞)→ R defined by

h(t) =
1

2
t− 1

p
A
−p/2
0 tp−1.

Note that h(0) = 0, p > 2 and h(t)→ −∞ as t →∞. We can show easly there
a unique t0 > 0 achieving the maxinum of h(t) at t0. Since

h′(t0) =
1

2
− p− 1

p
A
−p/2
0 tp−2

0 = 0,
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we have

t0 =

(
p

2(p− 1)

)1/(p−2)

A
p/2(p−2)
0 .

Hence, we have

(2.2) h(t0) =
1

2

(
N

N + 2

)(N−2)/4(
4

N + 2

)
A

(N−2)/4
0 .

Taking R0 = t0, for u ∈ ∂B̄R0 ,

(2.3)

Iν(u) =
1

2

∫ (
|∇u|2 − µ |u|

2

|x|2

)
− 1

p

∫
(u+)p − ν

∫
fu

≥ 1

2
||u||2 − 1

p
A
−p/2
0 ||u||p − ||νf ||∗||u||

= t0 [h(t0)− ||νf ||∗]

From (2.2) and (2.3), we have Iν(u)|∂B̄R0
≥ 0. This completes the proof.

Proposition 2.3. Assume f ∈ H−1, f(x) ≥ 0, f(x) 6≡ 0 in RN and ||νf ||∗ ≤
C∗N , then problem (Pν) has at least one positive solution uν such that

(2.4) Iν(uν) := c1 = inf{Iν : u ∈ B̄R0},
where B̄R0 = {u ∈ H : ||u|| ≤ R0}.

Proof. By Sobolev inequality, the generalized Hölder and Young’s inequality
with ε > 0, there exists Cε > 0, we have

Iν(u) =
1

2

∫ (
|∇u|2 − ν |u|

2

|x|2

)
− 1

p

∫
(u+)p − ν

∫
fu

≥ 1

2
||u||2 − 1

p
S−p/2||u||p − ||νf ||∗||u||

≥
(

1

2
− ε
)
||u||2 − 1

p
S−p/2||u||p − Cε||νf ||2∗.

Taking ε < 1
2 , then, for R0 = t0 as in Lemma 2,2, we can find a CR0

> 0
small enough such that

(2.5) Iν(u)|∂BR0
≥ CR0

for ||νf ||∗ ≤ C∗N .

Since there exists a C̃R0
> 0 such that |Iν(u)| ≤ C̃R0

for all u ∈ B̄R0
and B̄R0

is
a complete metric space with respect to the metric d(u, v) = ||u−v||, u, v ∈ B̄R0

,
by using the Ekeland’s variational principle, from (2.5), we can prove that there
exists a sequence {un} ⊂ B̄R0 and uν ∈ B̄R0 such that

(2.6) Iν(un)→ c1,

(2.7) I ′ν(un)→ 0,

(2.8) un → uν weakly in H,
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un → uν a.e. in RN ,
∇un → ∇uν a.e. in RN

and
un

p−1 → uν
p−1 weakly in

(
Lp(RN )

)∗
as n→∞.

Therefore, uν is a weak solution of (Pν). Hence,

(2.9) 〈I ′ν(uν), ϕ〉 = 0 ∀ϕ ∈ H.
Moreover, by Lemma 2.1, uν is positive on RN , where I ′ν is the Frėchlet deriv-
ative of Iν .

Next, we are going to prove (2.4). In fact, by the definition of c1, we know
that Iν(uν) ≥ c1 since uν ∈ B̄R0

, that is,

(2.10) Iν(uν) =
1

2

∫ (
|∇uν |2 − µ

|uν |2

|x|2

)
− 1

p

∫
|uν |p − ν

∫
fuν ≥ c1

By (2.9) and (2.10), we have

(2.11)

(
1

2
− 1

p

)∫ (
|∇uµ|2 − µ

|uν |2

|x|2

)
−
(

1− 1

p

)
ν

∫
fuν ≥ c1

On the other hand, by (2.6) - (2.8) and Fatou’s lemma, we get
(2.12)

c1 = lim inf
n

(
1

2
− 1

p

)∫ (
|∇un|2 − µ

|un|2

|x|2

)
− lim sup

n

(
1− 1

p

)
ν

∫
fun

≥
(

1

2
− 1

p

)∫ (
|∇uν |2 − µ

|uν |2

|x|2

)
−
(

1− 1

p

)
ν

∫
fuν .

Thus, (2.10) and (2.12) imply (2.4) holds. This completes the proof.

Remark 2. (i) c1 < 0, (ii) c1 is bounded below, (iii) ||uν || = o(1) as ν → 0+.

Indeed: (i) For t > 0 and ϕ > 0, we have

Iν(tϕ) =
t2

2

∫ (
|∇ϕ|2 − µ |ϕ|

2

|x|2

)
− tp

p

∫
|ϕ|p − tν

∫
fϕ ≤ t2

2
||ϕ||2 − tν

∫
fϕ.

By taking t > 0 sufficiently small, we can see c1 < 0.
(ii) By (2.9) with ϕ = uν , and c1 = Iν(uν), we have

(2.13)

c1 =

(
1

2
− 1

p

)∫ (
|∇uν |2 − µ

|uν |2

|x|2

)
−
(

1− 1

p

)
ν

∫
fuν

≥
(

1

2
− 1

p

)
||uν ||2 −

(
1− 1

p

)
||νf ||∗||uν ||

≥ − 1

2p

[
(p− 1)2

p− 2

]
||νf ||2∗

by Young’s inequality.
(iii) Since c1 < 0, from (2.13), we see that ||uν || → 0 as ν → 0+. Hence,

||uν || = o(1) as ν → 0+. We also have that {uν} is uniformly bounded with
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respect to ν. We will restate results relating to this remark in Proposition 3.4
more precisely.

Proposition 2.4. Problem (Pν) possesses at least one minimal positive solution
of (Pν).

Proof. Let N be the Nehari manifold (cf. [15]):

N :=

{
u ∈ H :

∫ (
|∇u|2 − µ |u|

2

|x|2

)
=

∫
|u|p +

∫
νfu

}
\ {0} .

Note that ||νf ||∗ � 1 for ν small enough and for each u ∈ H \ {0} , there exists
a unique tu > 0 such that

t2u

∫ (
|∇u|2 − µ |u|

2

|x|2

)
− tpu

∫
|u|p − tu

∫
νfu = 0

and Iν(tuu) > 0. Then

N = {tuu : u ∈ H \ {0}}

and

N ∼= SN−1 = {u ∈ H : ||u|| = 1} .
Hence,

H = H1 ∪H2 ∪N , H1 ∩H2 = φ and 0 ∈ H1,

where
H1 = {tu : u ∈ H \ {0} , t ∈ [0, tu[}
H2 = {tu : u ∈ H \ {0} , t > tu} .

This implies that for t > 0 with t < tu, tu ∈ H1.
Here, we need to switch our view point, by associating with v a mapping

v : [0,∞[→ H

defined by

(v(t))x = v(x, t), x ∈ RN , t ∈ [0,∞[.

In other words, we consider v not as a function of x and t together, but rather
as a mapping v of t into the space H of a function of x.

We have, for any v0 ∈ H1, the solution v of the initial value problem:
dv

dt
−∆v − µ v

|x|2
= vp−1 + νf(x) in RN

v(0) = v0,

converges to uν as t→∞,
Indeed, in the proof of Proposition 2.3, we know that Iν(v(t)) is decreasing

and limt→∞ Iν(v(t)) = Iν(uν), where Iν(uν) is the local minimum.
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Since

Iν(v(t))− Iν(v(s)) =

∫ t

s

d

dt
Iν(v(t))dt

=

∫ t

s

〈
d

dt
v,∇Iν(v(t))

〉
dt

= −
∫ s

t

∥∥∥∥ ddtv
∥∥∥∥2

dt,

we have, lims,t→∞
∥∥ d
dtv
∥∥2

= 0. Thus, v′ → 0 a.e. in RN as t → ∞ and hence,

〈I ′ν(v), ϕ〉 → 0, ∀ϕ ∈ C∞(RN ). Therefore, we have v → uν as t → ∞, since
Iν(v(t)) is decreasing and converges to the local minimum Iν(uν).
Now, let v0 = tu, where t ∈]0, 1[ and u is a positive solution. Then u ∈ N and
v0 ∈ H1. Since v0 ≤ u and the solution v converges uν as t→∞, by the order
preserving principle, uν ≤ u . This completes the proof.

Proposition 2.5. Suppose that f ∈ H−1, f ≥ 0, f 6≡ 0 in RN and ||νf ||∗ ≤ C∗N .
Then there exist ν̃ ≥ ν̄ > 0 such that (Pν) possesses a positive solution for
0 < ν ≤ ν̄ and no positive solution for ν > ν̄.

Proof. By Proposition 2.3, (Pν) has a positive solution if ν ≤ C∗N/||f ||∗. Suppose
(Pν) has a positive solution for some ν = ν̄. We will show that (Pν) has a
positive solution for any 0 < ν ≤ ν̄. For fixed 0 < ν < ν̄, using the Lax-Milgram
Theorem, we construct a positive sequence {un} as following;

Let

−∆u1 − µ
u1

|x|2
= νf in RN ,

and

(2.14) −∆un − µ
un
|x|2

= up−1
n−1 + νf for n ≥ 2.

Then, by the maximum principle, we have 0 < un < un+1 < · · · < ū for n ≥ 1.
And ||u1|| ≤ ν||f ||∗. Multiplying (2.14) by un, we have ||un|| ≤ A−p/2||ū||p−1 +
ν||f ||∗.

Therefore, there exists u in H such that

un → u weakly in H as n→∞,

un → u a.e. in RN as n→∞,
∇un → ∇u a.e. in RN,

up−1
n → up−1 weakly in

(
Lp(RN )

)∗
as n→∞.

Thus, u is a positive solution of (Pν).
Next, let u be a positive solution of (Pν). Then, for any ε > 0, multiplying

(Pν) by ωε,s, we have

(2.15) −
∫

∆u · ωε,s − µ
u

|x|2
ωε,s =

∫
up−1ωε,s + ν

∫
f(x)ωε,s.
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By Green’s formular, we have, for any R > 1, we have∫
∂BR

∆u · ωε,s −
∫
∂BR

u ·∆ωε,s =

∫ (
∂u

∂n
− ∂ωε,s

∂n

)
dS

≤ ωε,s(R)

∫
∂BR

|∇u|dS + |∇ωε,s|(R)

∫
∂BR

|u|dS

≤ O
(
R−N+2

)(∫
∂BR

|∇u|dS +

∫
∂BR

|u|dS
)
.

Hence, the right-hand side approaches 0. Therefore, we have

(2.16)

∫
∆u · ωε,s =

∫
u ·∆ωε,s.

Since u ∈ H is a positive solution to (Pν),∫ (
−∆u− µ u

|x|2

)
ωε,s =

∫
|u|p−1ωε,s +

∫
νf(x)ωε,s.

From (2.16), we have∫ (
−∆ωε,s − µ

ωε,s
|x|2

)
u =

∫
|u|p−1ωε,s + ν

∫
f(x)ωε,s.

Since p > 2, for any M > 0, there exists a constant C > 0 such that

up−1 ≥Mu− Cωp−1
ε,s , ∀u > 0.

Hence, we have, from (2.15),∫ (
−∆ωε,s − µ

ωε,s
|x|2

)
u ≥

∫ [(
Mu− Cωp−1

ε,s

)
ωε,s + νf(x)ωε,s

]
.

Therefore, by (1.2), we have

ν

∫
f(x)ωε,s ≤

∫ (
−∆ωε,s − µ

ωε,s
|x|2

)
u−M

∫
ωε,su+ C

∫
ωpε,s

≤
∫
ωp−1
ε,s u−M

∫
ωε,su+ C

∫
ωpε,s

≤ ||ωε,s||p−2
∞

∫
ωε,su−M

∫
ωε,su+ C

∫
ωpε,s.

Taking M = ||ωε,s||p−2
∞ , then, by (1.1), we have

ν ≤
C
∫
ωpε,s∫

f(x)ωε,s
<∞.

Hence, there exists ν̄ > 0 such that, by (1.3),

(2.17) ν̄ ≤ ν̃ := inf
ε>0

C
∫
wpε,s∫

f(x)ωε,s
= inf
ε>0

CSN/2∫
f(x)ωε,s

<∞.

Therefore, if ν > ν̄, then (Pν) has no solution and this completes the proof.
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3. Multiplicity of positive solutions

From now on, we assume that f ∈ H−1, f ≥ 0, f 6≡ 0 in RN and f satisfies
||νf ||∗ ≤ C∗N .

We set

ν∗ := sup{ν ∈ R+ : (Pν) has at least one positive solution in H}.

Then, by Proposition 2.5, we have 0 < ν̄ ≤ ν∗ <∞.
Remark. The minimal solution uν of (Pν) is increasing with respect to ν.

Indeed, suppose ν∗ > ν > η. Since

−∆uν − µ
uν
|x|2
− up−1

ν − ηf(x) = (ν − η)f ≥ 0,

uν > 0 is a supersolution of (Pη). Since f(x) ≥ 0 and f(x) 6≡ 0, u ≡ 0 is a
subsolution of (Pη) for η > 0. By the standard barrier method, we can obtain
a solution uη of (Pη) such that 0 ≤ uη ≤ uν on RN . We note that 0 is not a
solution of (Pη), ν > η and uη is a minimal solution of (Pη). Therefore, because
uη also can be derived by an iteration scheme with initial value u(0) = 0, by the

maximal principle, 0 < uη < uν in RN which completes the proof.

Now, consider the corresponding eigenvalue problem:

(3.1)ν

−∆ϕ− µ ϕ

|x|2
= λ(ν)(p− 1)up−2

ν ϕ in RN ,

ϕ in H.

Let λ1 be the first eigenvalue of (3.1)ν ; i.e.,

λ1 = λ1(ν) := inf{
∫ (
|∇ϕ|2 − µ |ϕ|

2

|x|2

)
: ϕ ∈ H, (p− 1)

∫
up−2
ν ϕ2dx = 1}.

Then, 0 < λ1 < ∞ and we can achieve the minimum by some function ϕ1 =
ϕ1(ν) ∈ H and ϕ1 > 0 in Ω if ν ∈]0, ν∗[ (cf. [17]).

We summarize basic properties for λ1(ν) :

Lemma 3.1. (i) For ν ∈]0, ν∗[, λ1(ν) > 1,
(ii) If 0 < η < ν ≤ ν∗, then λ1(ν) < λ1(η),
(iii) λ1(ν)→ +∞ as ν → 0+.

Proof. (i) For given 0 < η < ν ≤ ν∗, every solution uν of (Pν) with ν ∈]0, ν∗[
is a supersolution of (Pν). By Taylor expansion, we have

−∆(uν − uη)− µ 1

|x|2
(uν − uη) =

(
up−1
ν − up−1

η

)
+ (ν − η)f

> (p− 1)up−2
η (uν − uη)
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and moreover, we get∫
∇(uν − uµ)∇ϕ1 − µ

∫
(uν − uη)

|x|2
ϕ1 =

∫ (
up−1
ν − up−1

η

)
ϕ1 +

∫
(ν − η)fϕ1

> (p− 1)

∫
up−2
η (uν − uη)ϕ1.

Therefore, from (3.1)ν , we have∫
∇(uν − uη)∇ϕ1 − µ

∫
(uν − uη)

|x|2
ϕ1 = λ1(ν)(p− 1)

∫
up−2
η (uν − uη)ϕ1,

which implies λ1(ν) > 1.
(ii) Since, for 0 < η < ν ≤ ν∗, uη < uν and

λ1(η)(p− 1)

∫
up−2
η ϕ1(η)ϕ1(ν) =

∫ (
∇ϕ1(η)− µϕ1(η)

|x|2

)
ϕ1(ν)

= λ1(ν)(p− 1)

∫
up−2
ν ϕ1(ν)ϕ1(η),

we have λ1(η) > λ1(ν).
(iii) First, we show that ||uν || → 0 as ν → 0+. Let ϕ = uν , Multiplying (Pν)

by uν , we have, ∫ (
|∇uν |2 − µ

|uν |2

|x|2

)
=

∫
upν + ν

∫
fuν

and hence, for ε > 0, we have, by Young’s inequality with ε,(
1− 1

λ1(p− 1)
− ε

2

)
||uν ||2 ≤ Cεν2||f ||2∗ for ε > 0.

Thus, for ε > 0 small, we have ||uν ||2 ≤ Cεν
2 for some constant Cε > 0, and

hence, ||uν || = o(1) as ν → 0+.
Next, Multiplying (3.1)ν by ϕ1,
we have,

||ϕ1||2 = λ1(ν)(p− 1)

∫
up−2
ν ϕ2

1

≤ λ1(ν)(p− 1)

(∫
|uν |p

)(p−2)/p(∫
ϕp1

)2/p

≤ λ1(p− 1)A
−p/2
0 ||uν ||p−2

(∫
|∇ϕ1|2 − µ

|ϕ1|2

|x2|

)
for some C > 0

and thus, 0 < A
p/2
0 ≤ λ1(ν)(p − 1)||uν ||p−2. Therefore, from (iii), we have the

desired result. This completes the proof.
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Lemma 3.2. Let uν be a positive solution of (1.3)ν for which λ1(ν) > 1. Then,
for any g ∈ H, the problem:

(3.2) −∆w − µ w

|x|2
= (p− 1)up−2

ν w + g(x), w ∈ H

has a solution.

Proof. Consider the functional defined by

J(w) =
1

2

∫ (
|∇w|2 − ν |w|

2

|x|2

)
− 1

2
(p− 1)

∫
up−2
ν w2 −

∫
gw, w ∈ H.

From Hölder’s inequality and Young’s inequality, we have, for any ε > 0,

J(w) ≥
(

1

2
− 1

2λ1(ν)

)
||w||2 − ε

2
||w||2 − Cε||g||2∗

=

(
1

2
− 1

2λ1(ν)
− ε

2

)
||w||2 − Cε||g||2∗

and hence, for small ε > 0, there exist C1,ε > 0 and C2,ε > 0 such that

(3.3) J(w) ≥ C1,ε||w||2 − C2,ε||g||2∗.

Let {wn} ⊂ H be the minimizing sequence of J(·). From (3.3), we have {wn}
is bounded in H. Hence, passing subsequence, we may have that there exists
w ∈ H such that

wn → w weakly in H as n→∞,
wn → w a.e. in as n→∞

Here, we also note that

∇wn → ∇w a.e. in RN as n→∞.

And

up−1
n → ũp−1 weakly in (Lp(RN ))∗ as n→∞.

By Fatou’s Lemma

||w||2 ≤ lim inf
n→∞

||wn||2.

Since {wn} is bounded in H, from (1.1),
∫
up−2
ν w2

n <∞ for n ≥ 1 imply

lim
n→∞

∫
gwn =

∫
gw, lim

n→∞

∫
up−2
ν w2

n =

∫
up−2
ν w2

and hence,

J(w) ≤ lim
n→∞

J(wn) = d.

Then, J(w) = d and w is a minimizer of J. Therefore, w is a critical point of J
and w is a solution of (3.2). This completes the proof.

Proposition 3.3. For ν = ν∗, the problem (Pν) has a positive solution uν∗ and
λ1(ν∗) = 1. Moreover, the solution uν∗ is unique in H.
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Proof. For ν ∈]0, ν∗[, multiplying (Pν) by uν , we have, by (3.1)ν ,∫ (
|∇uν |2 − µ

|uν |2

|x|2

)
=

∫
u2∗

ν + ν

∫
fuν

≤ 1

λ1(ν)(p− 1)

∫ (
|∇uν |2 − µ

|uν |2

|x|2

)
+ ν∗||f ||∗||uν ||

=

(
1

λ1(ν)(p− 1)
+
εν∗

2

)
||uν ||2 +

ν∗

2ε
||f ||2∗.

By taking ε > 0 small enough, there exists an constant Cε > 0 such that
||uν || ≤ Cε for all ν ∈]0, ν∗[. Then, there exists uν∗ in H such that uν mono-
tonically increasing to uν∗ as ν → ν∗ and uν → uν∗ weakly in H as ν → ν∗.
Hence, uν∗ is a positive solution of (Pν) with ν = ν∗. We note that λ1(ν) is a
continuous function of ν ∈]0, ν∗].

Define F : R1 ×H → H−1 by

F (ν, u) := ∆u+ µ
u

|x|2
+ (u+)p−1 + νf(x) in RN \ {0}.

Since uν → uν∗ weakly as ν → ν∗, from Lemma 3.1, λ(ν∗) ≥ 1. If λ1(ν∗) > 1,

then Fu(ν∗, uν∗)ϕ = ∆ϕ+ µ ϕ
|x|2 + (p− 1)up−2

ν∗ ϕ = 0 has no nontrivial solution.

From Lemma 3.2, F (ν∗, uν∗) is an isomorphism of R1 × H onto H−1, and by
the implicitly function theorem to F, we find a neighborhood ]ν∗ − δ, ν∗ + δ[
of ν∗ such that (Pν) possesses a positive solution if ν ∈]ν∗ − δ, ν∗ + δ[, which
contradicts the definition of ν∗. Therefore, λ1(µ∗) = 1.

Suppose vν∗ is a positive solution of (Pν∗). Then vν∗ ≥ uν∗ since uν∗ is
minimal. Let w = vν∗ − uν∗ . Then, since λ1(ν∗) = 1, we have

−∆w − µ w

|x|2
≥ (p− 1)up−2

ν∗ w.

Since ϕ1 = ϕ1(ν∗) is the eigenfunction of the problem (3, 1)ν∗ , we have,

(p− 1)

∫
up−2
ν∗ ϕ1w =

∫
∇w∇ϕ1 − µ

∫
w
ϕ1

|x|2
≥ (p− 1)

∫
up−1
ν∗ wϕ1

and hence, w ≡ 0. This completes the proof.

Proposition 3.4. The minimal solution uν of (Pν) increasing continuously
to uν∗ as ν → ν∗ and uniformly bounded in H for all µ ∈]0, ν∗]. Moreover,
||uν || ≤ O(ν2) as ν → 0+.

Proof. It suffices to find the uniform bound of uν . Multiplying (Pν) by uν , we
have ∫ (

|∇uν |2 − µ
|uν |2

|x|2

)
=

∫
upν +

∫
νfuν

and hence, for ε > 0, we have(
1− 1

λ1(ν)(p− 1)
− ε

2

)
||uν ||2 ≤

ν2

2ε
||f ||2∗ for ε > 0.
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Therefore, for ε > 0 small, we have ||uν || ≤ Cεν for some constant Cε > 0.
Next, fix τ ∈]0, ν∗]. If ν increases to τ, then uν is increasing up to uτ and
uν → uτ in H. If it is not the case, then, by multiplying uτ on (Pν) again, we
have, Lemma 4.3 in [8],

||uν ||2 ≤
∫
up−1
τ uτ + ν∗ 〈f, uτ 〉

and so

||uν ||2 ≤ S−p/2||uτ ||p + ν∗||f ||∗||uτ ||.

Hence, there exists a sequence {uνj} in H conversing weakly to a solution ũ of

(Pτ ) but ũ 6= uτ . Since {uνj} coverge to ũ strongly in local L1 sense, by the
maximum principle, we have uνj ≤ ũ < uτ which leads a contradiction to the
minimality of uτ . This completes the proof.

Remark 3. From Proposition 3.4 , we have that λ(ν) is a continuously decreasing
function from [0, ν∗] onto [1,∞[ and ||uν || = o(1) as ν → 0+.

Next, we are going to find the second solutions bigger than minimal solutions.
In order to get another positive solution of (Pν), we consider the following
problem:

(3.4)ν

−∆v − µ v

|x|2
= (v+ + uν)p−1 − up−1

ν in Ω,

v ∈ H, v > 0 in Ω

and the corresponding variational functional:

Jν(v) :=
1

2

∫ (
|∇v|2 − µ |v|

2

|x|2

)
− 1

p

∫ (
(v+ + uν)p − upν − pup−1

ν v+
)

for v ∈ H.
Clearly, we can have another positive solution Uν = uν + vν if we show the

problem (3.4)ν possesses a positive solution for ν ∈]0, ν∗[. We look for a critical
point of Jν which is a weak solution of (3.4)ν by employing standard argument
of the Mountain Pass method without the (PS) condition.

In the proof of the existance second solution, we make use of some arguments
in [7].

Theorem 3.5. The problem (Pµ) possesses at least two positive solutions for
all ν ∈]0, ν∗[.
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Proof. (i) Let v ∈ H \ {0}, Then, for ε > 0, by Young’s inequality,

Jν(v) =
1

2

∫ (
|∇v|2 − µ |v|

2

|x|2

)
dx−

∫ ∫ v+

0

(
(uν + t)p−1 − up−1

ν

)
dtdx

≥ 1

2

(
1− 1

λ1

)∫ (
|∇v|2 − µ |v|

2

|x|2

)
dx−

−
∫ ∫ v+

0

[
(uν + t)p−1 − up−1

ν − (p− 1)up−2
ν t

]
dtdx

≥ 1

2

(
1− 1

λ1

)∫ (
|∇v|2 − µ |v|

2

|x|2

)
dx−

∫ ∫ v+

0

(
εup−2
ν t+ Cεt

p−1
)
dtdx

≥ 1

2

(
1− 1

λ1

)
||v||2 − ε

2

∫
up−2
ν

(
v+
)2
dx− Cε

p

∫ (
v+
)p
dx

≥ 1

2

(
1− 1

λ1
− ε

2(p− 1)λ1

)
||v||2 − Cε

p
S−1/2||v||p

for some constant Cε > 0. Hence, for sufficiently small ε > 0, there exist ρ >
0, δ > 0 such that

Jν(v)|∂B̃ρ ≥ δ > 0,

where B̃ρ = {u ∈ H : ||u|| ≤ ρ}.
(ii) Let v ∈ H, v ≥ 0 and v 6≡ 0, then, for t > 0, we have

(3.5)

Jν(tv) =
t2

2

∫ (
|∇v|2 − µ |v|

2

|x|2

)
dx− 1

p

∫ [
(uν + tv)p − upν − pup−1

ν tv
]
dx

≤ t2

2

∫ (
|∇v|2 − µ |v|

2

|x|2

)
dx− tp

p

∫
|v|pdx

≤ t2

2
||v||2 − tp

p
||v||pp

Hence, we deduce

Jµ(tv)→ −∞
as t → ∞. Therefore, for any 0 6≡ v ∈ H with v ≥ 0, there exists a constant
t0 > 0 such that Jν(t0v) ≤ 0 for t ≥ t0.

Observe that
Next, we are going to show that

sup
t≥0

Jν(tu0) <
1

N
SN/2

for some u0.
Indeed, for small t1 > 0, by Proposition 2.3 and its remark, any 0 < t < t1,

Jν(tu0) < 1
N S

N/2 for some u0 ∈ H. Choose t2 > t1 such that Jν(tu0) ≤ 0 for
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all t ≥ t2, For t1 ≤ t ≤ t2, from (3.5), we have

Jν(tu0) <
t2

2

∫ (
|∇u0|2 − µ

|u0|2

|x|2

)
dx− tp

p

∫
|u0|pdx

=

(
t2

2
− tp

p

)
SN/2 ≤ 1

N
SN/2.

Let

Γ := {γ ∈ C ([0, 1], H); γ(0) = 0, γ(1) = t2u0}
and

cν = infγ∈Γmaxs∈[0,1]Jν(γ(s)).

Then, we have

(3.6) 0 < α ≤ cν ≤ supt≥0Jν(tu0) <
1

N
SN/2.

We now applying the Mountain Pass Theorem without Palais-Smale condi-
tion in [4] to get a sequence {vn} ⊂ H such that

(3.7) Jν(vn)→ cν , J ′ν(vn)→ 0 in H.

Then, we see that {vn} is bounded in H. Hence, there exists a subsequence, say
again, {vn} such that

vn → vν weakly in H,

vn → vν a.e. in Ω,

∇vn → ∇vν a.e. in Ω,

and

(vn + uν)
p−1 − up−1

ν →
(
v+ + uν

)p−1 − up−1
ν weakly in (Lp(Ω))

∗
.

Hence, vν is a weak solution of −∆v − µ v
|x|2 = (v+ + uν)

p−1 − up−1
ν .

Using the maximal principle, we get vν ≥ 0 in Ω. Furthermore, ||v−n || = o(1)
since < J ′ν(vn), v−n >→ 0 as n → ∞. Set un := vn + uν and u := v + uν . We
claim that u 6≡ uν . Suppose u ≡ uν . Then vn = un−u converges weakly but not
strongy to 0 in H because cν > 0. Now, we observe that, by Hölder’s inequality,∫ [(

v+
n + uν

)p−1 −
(
v+
n

)p−1
]
v+
n

= (p− 1)

∫ (
v+
n + θuν

)p−2
uνv

+
n

≤ (p− 1)

[∫ (
v+
n + θuν

)p−1
v+
n

](p−2)/(p−1) [∫
up−1
ν v+

n

]1/(p−1)

= o(1)

for some 0 < θ < uν and thus
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||v+
n ||2 =

∫ [(
v+
n + uν

)p−1 −
(
v+
n

)p−1
]
v+
n + o(1)

=

∫ (
v+
n + uν

)p−1
v+
n + o(1)

= ||v+
n ||pp + o(1).

Then, by the Sobolev-Hardy inequality:(1.1),

S||v+
n ||2p ≤ ||v+

n ||2 = ||v+
n ||pp + o(1),

which gives us that ||v+
n || ≥ SN/2. On the other hand,

Kν(un) :=
1

2
||un||2 +

1

p
||v+
n + uν ||pp − ν < f, un >

=
1

2
||uν ||2 −

1

p
||uν ||pp − ν < f, uν > +Jν(vn)

= Hν(uν) + Jν(vn)

= Kν(uν) + cν + o(1).

Moreover, from Brezis-Leb Lemma[cf.[3]] that,

Kν(un) :=
1

2

(
||uν ||2 + ||vn||2

)
− 1

p

(
||uν ||pp + ||v+

n ||pp
)
− ν < f, un > +o(1)

= Kν(uν) +
1

2
||v+
n ||2 −

1

p
||v+
n ||pp + o(1)

= Kν(uν) +
1

N
||v+
n ||pp + o(1).

Then, we have

cν <
1

N
SN/2 ≤ ||v+

n ||pp = cν + o(1),

a contraction. Therefore, vν := v > 0 and Uν := vν + uν is a second solution to
(Pν). This completes the proof.

Consequently, we have:

Theorem 3.6. Assume f ∈ H, f ≥ 0, f 6≡ 0 in Ω and ||νf ||∗ ≤ C∗N . Then there
exists a positive constant ν∗ > 0 such that (Pν) possesses at least two positive
solutions for 0 < ν < ν∗, a unique solution for ν = ν∗ and no positive solution
if ν > ν∗.
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4. Bifurcation

In order to study the uniqueness of second the solutions Uν and bifurcation
phenomenon, we consider following eigenvalue problem:

(4.1)ν

−∆φ− µ φ

|x|2
= η(ν)(p− 1)Up−2

ν φ,

φ in H.

Let η1 be the first eigenvalue of (4.1)ν ;i.e.,

η1 = η1(ν) = inf
06=φ∈H

{∫
|∇φ|2 − µ |φ|

2

|x|2
:

∫
(p− 1)Up−2

ν φ2 = 1

}
.

The infinum is achieveed by some function φ and φ > 0 in Ω.

In the proof of the following lemma, we make use of arguments in [2].

Lemma 4.1. Let Uν be a second positive solution of (Pν) obtained in Theorem
3.5. Then η1(ν) < 1 for 0 < ν < ν∗.

Proof. Suppose contrary that η1(µ) ≥ 1. Let φ1 > 0 be the eigenfunction for
the eigenvalue η1 and ψ := Uν − uν > 0. Then φ1 and ψ satisfies

(4.2) ∆φ1 +µ
φ1

|x|2
+ (p− 1)Up−2

ν φ1 ≤ 0 and ∆ψ+µ
ψ

|x|2
+ (p− 1)Up−2

ν ψ ≥ 0,

respectively. Set σ = ψ/φ1;i.e., ψ = σφ1. Then, by (4.2),

(4.3) σ∇(φ2
1∇σ) = ψ∆ψ −∆φ1

ψ2

φ1
≥ 0.

Let ζ be a C∞ function on R+ such that 0 ≤ ζ(t) ≤ 1,

ζ(t) :=

{
1 for 0 ≤ t ≤ 1,

0 for t ≥ 2.

For R > 0, set ζR(t) := ζ
(
|x|
R

)
in RN . Multiplying (4.3) by ζ2

R and intergrating

over RN , we have by Green’ theorem,

(4.4)

∫
ζ2
Rφ

2
1|∇σ|2 ≤ 2

∣∣∣∣∫ φ2
1ζRσ∇σ · ∇ζR

∣∣∣∣
≤ 2

[∫
R<|x|<2R

ζ2
Rφ

2
1|∇σ|2

]1/2 [∫
φ2

1σ
2|∇ζR|2

]1/2

≤ C1

[∫
R<|x|<2R

ζ2
Rφ

2
1|∇σ|2

]1/2 [∫
R<|x|<2R

ψp

]1/2

≤ C2

[∫
R<|x|<2R

ζ2
Rφ

2
1|∇σ|2

]1/2
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for some constants C1 and C2 independent of R. Then,∫
ζ2
Rφ

2
1|∇σ|2 ≤ C3

for some constant C3 > 0 independent of R.
Letting R→∞, we see that ∫

RN
φ2

1|∇σ|2 ≤ C3.

But then it follows that the last term in (4.4) tends to 0 as R→∞, so that∫
Rn
φ2

1|∇σ|2 = 0.

Therefore, σ is a positive constant and by (4.2), φ ≡ ψ = Uν − uν , and thus
Uν ≡ uν , which leads a contradiction. This completes the proof.

Lemma 4.2. For ν ∈]0, ν∗[, Uν decreases contonusely to uν∗ as ν → ν∗ in H.
Moreover,

(i) Uν → uν∗ as ν → ν∗ by the uniqueness of uν∗ ,
(ii) limν→0+ ||Uν || = SN/4.

Proof. First, we note that(
1

2
− 1

p

)
||Uν ||2 =

1

2
||Uν ||2 −

1

p

∫ (
Upν + ν

∫
fUν

)
= ν

(
1− 1

p

)∫
fUν − ν

∫
fuν − ν

∫
fvν

+
1

2
||uν ||2 +

1

2
||vν ||2 +

∫
∇uν∇vν +

∫
uνvν −

1

p

∫
Upν

≥ ν
(

1− 1

p

)∫
fUν + Jν(vν) +H(uν),

where H(u) := 1
2 ||u||

2 − 1
p

∫
up − ν

∫
fu.

From Hölder’s and Young’s inequality, for ε > 0, we have(
p− 2

2p
− ε(p− 1)

2p

)
||Uν ||2 ≤

p− 1

ε2p
ν2||f ||2∗ +

1

N
SN/2 +H(uν).

Since

H(uν) =

(
1

2
− 1

p

)
||uν ||2 − ν

(
1− 1

p

)∫
fuν

≤
(

1

2
− 1

p

)
||uν∗ ||2,

H(uν) is uniformly bounded for ν ∈ (0, ν∗]. Moreover, by the remark of Propo-
sition 3.4, H(uν) = o(1) as ν → 0+. Taking ε > 0 small enought, we have
||Uν || ≤ C for some C > 0. Since 0 < uν ≤ Uµ, (i) follows from Proposition 3.3
and Proposition 3.4.
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For (ii). By (ii) of Lemma 3.1, and (i) and (iii) in the proof of Theorem 3.5,
there exists d > 0 such that

0 < d < Jν(vν) = H(Uν)−H(uν) <
1

N
SN/2

and thus, since J ′ν(Uν)Uν = 0,

d+H(uν) ≤ 1

N
||Uν ||2 −

p− 1

p
ν

∫
fUν ≤ H(uν) +

1

N
SN/2.

Since Uν is uniformly bounded,

(4.5) d+ o(1) ≤ 1

N
||Uν ||2 ≤

1

N
SN/2 + o(1).

By Sobolev’s inequality, S||Uν ||2p ≤ ||Uν ||2 = ||Uν ||pp + o(1). Then ||Uν ||pp ≥
SN/2 + o(1) and so ||Uν ||2 ≥ SN/2 + o(1). Therefore by (4.5), we have

lim
ν→0+

||Uν || = SN/2.

Now, fix ρ ∈]0, ν∗]. Suppose µ increase to ρ, then Uν is decreasing to Uρ in H
and we have

||Uν || ≤ S−p/2||Uρ||p−1 + ρ||f ||∗
and so, there exists a sequence Uνj conving weakly to a solution Ũ of (Pν) in

H with ρ = ν but Ũ 6= Uρ. By the maximum principle, we have Uρ < Ũ ≤ Uν∗

which contradicts the uniqueness of solutions bigger than uν . Therefore, Uν is
decreasing continuously to Uρ and Uν → Uρ in H. This completes the proof.

Lemma 4.3. et V be a positive supersolution of (Pν) bigger than uν then V ≤
Uν .

Proof. Suppose V > Uν in Ω, then W = V − Uν satisfies

(p− 1)

∫
Up−2
ν Wφ1 ≤

∫
∇W · ∇φ1 = η1(p− 1)

∫
Up−2
ν Wφ1

and thus, η1(ν) ≥ 1, which leads a conrradiction. This completes the proof.

Remark 4. From Lemma 4.1 and Lemma 4.3, we can see the uniqueness of
second solutions which are bigger than the minimal solutions uν .

Now, we state basic properties of the eigenvalue problem (4.1)ν :

Lemma 4.4. (i) 1/(p− 1) < η1(ν) < 1 for 0 < ν < ν∗,
(ii) η1(ν)→ 1/(p− 1)→ 1/(p− 1) as ν → 0+,
(iii) η1(ν)→ 1 as ν → ν∗.

Proof. (i) Since φ1 > 0 is an eigenvector corresponding to the the first eigen-
value η1(µ), we know

η1(ν)(p− 1)

∫
Up−1
ν φ1 =

∫
∇Uν · ∇φ1 =

∫
Up−1
ν φ1 + ν

∫
fφ1.
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and so,

η1(ν)(p− 2)

∫
Up−1
ν φ1 = ν

∫
fφ1.

Therefore, by Lemma 4.1, 1 > η1(µ) > 1
p−1 .

(ii) As µ→ 0+,

1

p− 1
< η1(ν) ≤ ||Uν ||2

(p− 1) ||Uν ||pp
≤ SN/2 + o(1)

(p− 1)
(
SN/2 + o(1)

) → 1

p− 1
.

Thus, η1(ν)→ 1/(p− 1) as ν → 0+.
(iii) follows from (i) of Lemma 3.1, Proposition 3.3, Lemma 4.1 and (i) of

Lemma 4.2. This completes the proof.

In order to show the existence of a bifurcation point, we make use of Theorem
3.2 is in [5].

Now, we have:

Theorem 4.5. (i) The set {Uν} is bounded uniformly in H,
(ii) (ν∗, uν∗) is a bifurcation point.

Proof. (i) It follows immediately from the proof of Lemma 4.2.
(ii) For this, define F : R×H → H−1 by

F (ν, u) := ∆u− u+ (u+)2∗−1 + νf(x).

It is easy to see that F (ν, u) is differentiable at solution point (ν, u) for ]0, ν∗[
and

Fu(ν, uν)w = ∆w − w + (2∗ − 1)u2∗−2
ν w

is an ismorphism of R×H onto H−1. Then, by the Implicit Function Theorem,
the solution of F (ν, u) near (ν, uν) are given by a single continuous cuver and
umn→ 0 in H−1 as ν → 0.

We now are going to prove that (ν∗, uν∗) is a bifurcation point of F. Since
Fu(µ∗, uµ∗)φ = 0, φ ∈ H1(RN ) has a solution φ1 > 0 in RN , N (Fu (µ∗, uµ∗)) =
span{φ1} is one dimensional and codimR (Fu (µ∗, uµ∗)) = 1 by the Fredholm
alternative. Suppose there exists v ∈ H1(RN ) satisfying

∆v − v + (2∗ − 1)u2∗−2
µ∗ v = −f(x).

Then

0 =

∫ (
∇v · ∇φ1 + vφ1 − (2∗ − 1)u2∗−2

µ∗ vφ1

)
=

∫
fφ1,

which is impossible because 0 6≡ f ≥ 0. Hence, Fu (µ∗, uµ∗) 6∈ R (Fu (µ∗, uµ∗)) .
Thus, by Theorem 3.2 in [5], (µ∗, uµ∗) is the bifurcation point near which, the
solution of (pµ) form a curve (µ∗ + τ(s), uµ∗ + sφ1 + z(s)) with s near s = 0
and τ(0) = τ ′(0) = 0, z(0) = z′(0) = 0. Finally, we will show that τ ′′(0) < 0
which implies that the bifurcation curve only turns to the left in the µu−plane.
For this, differentiate (Pµ) in s, we have

(4.6) ∆us − us + (2∗ − 1)u2∗−2us + τ ′(s)f(x) = 0,
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where us = φ1 + z′(s). Multiplying Fu (µ∗, uµ∗)φ1 = 0 by us and (4,6) by φ1,
integrating and substracting, we have

τ ′(s)

∫
fφ1 = (2∗ − 1)

∫ (
u2∗−2
µ∗ − (uµ∗ + sφ1 + z(s))

2∗−2
)

(φ1 + z′(s))φ1

= −s(2∗ − 1)(2∗ − 2)

∫
(uµ∗ + θ(sφ1 + z(s)))

2∗−3

(
φ1 +

z(s)

s

)
(φ1 + z′(s))φ1

for some θ(s) ∈ (0, 1). Therefore,

τ ′′(0)

∫
fφ1 =

(
lims→0

τ ′(s)

s

)∫
fφ1 = − (2∗ − 1) (2∗ − 2)

∫
(uµ∗)

2∗−3
φ3

1

and τ ′′(0) < 0. This completes proof.
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