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PARAMETRIZED PERTURBATION RESULTS ON GLOBAL
POSITIVE SOLUTIONS FOR ELLIPTIC EQUATIONS
INVOLVING CRITICAL SOBOLEV-HARDY EXPONENTS
AND HARDY TEREMS

WAN SE KiMm

ABSTRACT. We establish existence and bifurcation of global positive solu-
tions for parametrized nonhomogeneous elliptic equations involving critical
Sobolev-Hardy exponents and Hardy terms. The main approach to the
problem is the variational method.

1. Introduction

In this paper, we are concerned with the multiple existence and bifurcation
of global positive solutions of the following nonhomogeneous problem:

u *
(P —Au—uW:|u|2f2u+Vf in RY,
we H inRY,

where v € RY, f € H™', f >0 and f #0 in RV,

Let N >3,0<s <2 2°(8) :i= 2(N — s)/(N — 2), and 2* = 2*(0). We
put |[ullP = [on [ulPdz, [|ul]loe = ess sup,cqlu(x)]. The space DV2(RY) :=
{u € L¥ (RY); Vu € L*(RY)} with inner product (u,v) = [on(Vu - Vv)da
and the corresponding norm ([~ \Vu\Qda:)l/ ? is a Hilbert space. The space
H := H}(RY) is the closure of C$*(RY) by (-, -).

By the Sobolev-Hardy inequality(see. [8]):

N —2)? §
=27 ﬂafx < |Vul|?dz for all ue DV2(RN).
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We note that H is a Hilbert space with the equvalent norm(cf. [9], [10]):

u2 1/2
= 2 _p——1d
full = | [ (19 =z )ae]

where 0 < p < fi := (N — 2)2/4; [ is the best Sobolev-Hardy constant. By
H~!, we denote its dual with norn || - ||, and by <, > the pairing of H.

It is known that the following Sobolev-Hardy inequality in [8] and [10]: Assume
that 0 < s <2, 2 <r < 2%(s), then there exist a constant C' > 0 such that

rN\ 2/7
(1.1) C (/ [ul ) < |lul?, Yu € H.
R

~ |zf®

Let A; , to denote the best Sobolev-Hardy constant, i.e., the largest constant
C satisfying the above inequality, that is,

2 2 2
b e g (0=
OFuet [ fow ul"/|2]*dx]

In the important Sobolev-Hardy critical case where r = 2*(s), we shall simply
denote Ay 9 () as As.

Remark 1. We note the case: s =0 1i.e., Ag = Ag2-. Usually, we denote

Jo | Vul?

S =
07éul,ED1*2 [I]RN |u 2*]2/2*

and since the above norm || - || and the usual morm are equivalent in D12(RY),
we may assume that Ay by some contant works as .S, so we may assume Ay = S.

In [10], we see that for € > 0, 0 < s < 2 and 8 = /i — @, the function

{2652@,_5)} Vi/(2—s)

we,s(x) 1= Vi , 0< < fi.

{IfﬂIﬁ*B (e + |x\(2*8)5/\/ﬁ)(1\’*2)/(278)}

solve the equation

u |2 ()2
1.2 —Au—p—s = ———— in RV\ {0
(1:2) w— = e i BV {0)
and satisfy
o
(1.3) l|we.s]]? :/ |w€|s||(s) - AgN—s)/@—s).
RN x|s

Moreover, A, is attained by w, s only on RV,
where v € RY, f € HT'(RY), f >0 and f #0 in RV.
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Our attempt to show multiplicity of positive solutions for problem (P,) relies
on the Ekeland’s variational principle in [6] and the Mountain Pass Theorem in
[1].

Since our problem (P,) posesses the critical nonlinearity and the embedding
H(RY) — L?>(RY) is not compact, in taking the opportunity of variational
structure of problem, the (PS) condition is no longer valid and so the Mountain
Pass Theorem in [1] could not be applied directly. However, we can use the
Mountain Pass Theorem without the (PS) condition in [4] to get some (PS).
sequence of the variational functional for the second solution with ¢ > 0.

For convenience, we omit “R” and “dz” in integration and, throughtout
this paper, we will use the letter C' to denote the natural various constants
independent of u. From now on, we put p = 2*.

2. Existence of minimal positive solutions

As a consequence of Hardy inequality, it is ease to see:

Lemma 2.1. The operator —A — ,uﬁ 18 positive, has discrete spectrum and
has the maximum principle in H.

Proof. See [10] and [12]. =

In order to get the existence of positive solutions of (P,), we consider the
energy functional I, of the problem (P,) defined by

2
I,(u) :—;/<|VU|Q;LIZ:2> —%/(tﬁ)pfy/fu, for vwe H.

First, we study the existence of the first solution for the problem (P,) by
finding a local mininum for energy functional I, . We denote

(N-2)/4
(2.1) Cp o= 1 (s T
2 \N+2 N +2

Lemma 2.2. Assume f € H™', f(x) >0, f(z) # 0 and ||[vf]|. < Cy, then
there exits a positive constant Ry > 0 such that I,,(u) > 0 for any v € 0Bg, =
{u € H :||ul| = Ro}.

Proof. We consider the function h(t) : [0, +00) — R defined by

1 1 _

h(t) = =t — — A"/
2. p

Note that ~(0) =0, p > 2 and h(t) - —oo as t — co. We can show easly there

a unique to > 0 achieving the maxinum of h(t) at ¢y. Since

1 -1 _ _
Wity) = 5 =S4T =0,
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we have

1/(p—2
. _( p ) 172 oee-2)
0= 0 .
2(p—1)
Hence, we have

(N—2)/4
1 N 4 (N-2)/4
(2:2) hlto) = 5 (N+2> (N+2) Ao ’

Taking Ry = to, for u € OBg,,

L@ =g [ (v =) =2 [y - [ 0

1 1 _
2 sllull® = A lull? = |l fll|ul

= to [h(to) = [[vfll+]
From (2.2) and (2.3), we have IV(“)‘E)BRO > 0. This completes the proof. =

(2.3)

Proposition 2.3. Assume f € H=Y, f(x) > 0, f(z) 20 in RN and ||vf|]. <
C% s then problem (P,) has at least one positive solution u, such that

(2.4) I,(u,) :==c, =inf{l, : u € Bg,},
where Br, = {u € H : ||Ju|| < Ro}.

Proof. By Sobolev inequality, the generalized Holder and Young’s inequality
with € > 0, there exists C. > 0, we have

1 K 1
o =g [ (9 =) =5 forr o [
> Lz = Lsr2 i < s pull

1

<2 B ) Julf? ~ %S*’”nunp ~ CdvfII

\Y)

Taking e < %, then, for Ry = ty as in Lemma 2,2, we can find a Cr, > 0
small enough such that

(2.5) L, (w)lor, > Cr, for [[vf|l. < Cx.

Since there exists a Cg, > 0 such that |1, (u)| < Cg, for all u € Bg, and Bp, is
a complete metric space with respect to the metric d(u, v) = |[u—v||,u,v € Bg,,
by using the Ekeland’s variational principle, from (2.5), we can prove that there
exists a sequence {u,} C Bg, and u, € Bg, such that

(2.6) L, (un) = c1,
(2.7) I, (un) = 0,

(2.8) U, — u, weakly in H,
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Uy —> U, a.e. in RN,
Vu, = Vu, ae. in RY
and
Pt = u, P! weakly in (L”(RN))* as n — 0o.
Therefore, w,, is a weak solution of (P, ). Hence,
(29) (I (u,). ) =0 Vo € H.

Moreover, by Lemma 2.1, u,, is positive on RY | where I/, is the Fréchlet deriv-
ative of I,.

Next, we are going to prove (2.4). In fact, by the definition of ¢;, we know
that I, (u,) > ¢ since u, € Bg,, that is,

1 uy|? 1
(2.10) I(u,) = 5/ (|Vul,2 _M|z||2 ) - 5/|ul,|p - u/fu,, >

By (2.9) and (2.10), we have

o (41) [ (moros) (D) frn

On the other hand, by (2.6) - (2.8) and Fatou’s lemma, we get
(2.12)

2
clzlimninf (;_;>/<|Vun|2— |r;|| )—hmsup (1_> /fun
) sm0) ()
> (3-5) [ (s -uliz) = (1=5) 7 [ e

Thus, (2.10) and (2.12) imply (2.4) holds. This completes the proof. =

Remark 2. (i) ¢1 <0, (ii) ¢1 is bounded below, (iii) ||u,|| = o(1) as v — 0T.

Indeed: (i) For t > 0 and ¢ > 0, we have

L) =5 [ (1968 -ul2) = Z [ior—uw [ 1o< Siteli - v [ 1

By taking t > 0 sufficiently small, we can see ¢; < 0.
(ii) By (2.9) with ¢ = u,, and ¢; = I,(u,), we have

G (o) (e
(3 3) el = (1= 2 sl

> o[22 o

2p
by Young’s inequality.
(ili) Since ¢; < 0, from (2.13), we see that ||u,|| — 0 as v — 0F. Hence,
[luy|| = o(1) as v — 0T. We also have that {u,} is uniformly bounded with

(2.13)

Y
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respect to v. We will restate results relating to this remark in Proposition 3.4
more precisely.

Proposition 2.4. Problem (P,) possesses at least one minimal positive solution

of (P,).
Proof. Let .4 be the Nehari manifold (cf. [15]):

W= {ueH:/<|Vu|2—uI;:z> :/u|p+/1/fu}\{0}.

Note that ||vf||« < 1 for v small enough and for each u € H \ {0}, there exists
a unique t,, > 0 such that

2
& [ (1vu -l )~ [t e [vra=o

and I, (t,u) > 0. Then
N ={tyu : we H\{0}}

and
N 2SN =fueH : ||u|=1}.
Hence,
H=H,UH,U.¥, HiNHy=¢and 0 € Hy,
where

Hy={tu : we H\ {0}, t €[0,t,[}
Hy={tu : we H\ {0}, t >1t,}.

This implies that for ¢ > 0 with ¢t < ¢,,, tu € H;.

Here, we need to switch our view point, by associating with v a mapping
v:[0,00[— H

defined by
(v(t))z =v(z,t), € RN, t €0, 00].

In other words, we consider v not as a function of x and ¢ together, but rather

as a mapping v of ¢ into the space H of a function of x.
We have, for any vy € Hi, the solution v of the initial value problem:

d
dit) _AU_M# = P L4 uf(z) in RY
v(0) = vo,

converges to u, as t — oo,
Indeed, in the proof of Proposition 2.3, we know that I, (v(t)) is decreasing
and limy_, o0 I, (v(¢)) = I, (u,), where I, (u,) is the local minimum.
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Since

L (w(t)) - L (u(s)) = / @1, (o(t))d

— /: <5tv,VL,(v(t))>dt
. /: i

dt,
we have, limg ;. H%v”z = 0. Thus, v — 0 a.e. in RN as ¢t — oo and hence,
(I(v), ) — 0, Yo € C®°(RYN). Therefore, we have v — u, as t — oo, since
I,(v(t)) is decreasing and converges to the local minimum I, (u, ).
Now, let vy = tu, where t €]0, 1] and u is a positive solution. Then u € .4 and
vg € Hy. Since vy < u and the solution v converges u, as t — oo, by the order
preserving principle, u, < u . This completes the proof. =

&U

Proposition 2.5. Suppose that f € H™1, f >0, f 20 in RN and ||vf||. < C%.
Then there exist v > v > 0 such that (P,) possesses a positive solution for
0 < v <7 and no positive solution for v > .

Proof. By Proposition 2.3, (P, ) has a positive solution if v < Cx /|| f||«. Suppose
(P,) has a positive solution for some v = ». We will show that (P,) has a
positive solution for any 0 < v < ». For fixed 0 < v < 7, using the Lax-Milgram
Theorem, we construct a positive sequence {u,,} as following;

Let

—Auy fuﬂ =vf in RY,
|z[?
and
(2.14) —Au, — ,u% =uP +uf for n>2.
x
Then, by the maximum principle, we have 0 < u,, < up41 < --- < u for n > 1.
And ||u|| < v||f|]~. Multiplying (2.14) by u,, we have ||u,|| < A=P/?||a||P~! +
V||f |-

Therefore, there exists v in H such that
u, — u weakly in H as n — o0,
Up — u a.e. in RY as n — oo,
Vu, — Vu a.e. in RN,
uP™! = uP~! weakly in (LP(RN))* as n — 0.
Thus, u is a positive solution of (P,).

Next, let u be a positive solution of (P,). Then, for any ¢ > 0, multiplying
(P,) by we,s, we have

(2.15) —/Auwuw — u#we,s = /up_lwgS + V/f($)w€,s.
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By Green’s formular, we have, for any R > 1, we have

Au.w€7s_/ u.Aw67S:/<%_aw678>ds
OBr 9B on on

gwE,S(R)/ |Vu|dS+\Vwe,s|(R)/ lulds
OBRr

O0BRr

gcmRN“)</ |vums+/1 mus).
BBR 6BR

Hence, the right-hand side approaches 0. Therefore, we have

(2.16) /Au “Wes = /u - Awe,s.

Since u € H is a positive solution to (P,),

u
/ (A’LL - MCC|2> We,s = / ‘u|p71wé,s +/Vf(x)w€75'

From (2.16), we have
We, s p—1
um|2>u=/|u| w€7s—|—u/f(x)w5,s.

f (e

Since p > 2, for any M > 0, there exists a constant C' > 0 such that
wP™l > Mu— CwP?l, VYu > 0.

€,8 7

Hence, we have, from (2.15),

/(—Awe,s — T)€|2> u > / [(Mu— CwP M) wes + vf(@)wes) -

Therefore, by (1.2), we have

V/f(x)we,s</<_Awes | |2>U—M/WESU+C/
< /wf;lu—M/w@su—&—C/wf,s
< ||w€vs||’(;2/w€7su—M/w€7su+0/w£s.

Taking M = ||w, s|[552, then, by (1.1), we have

fw

< < 00.
= TF@wes
Hence, there exists o > 0 such that, by (1.3),
C [wr N/2
(2.17) 7<= inf / _inf 90 < 0.

€>Off T)We s e>0ff T)We s

Therefore, if v > 7, then (P,) has no solution and this completes the proof. =
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3. Multiplicity of positive solutions

From now on, we assume that f € H~!, f >0, f # 0 in R" and f satisfies
v fll« < Cx
We set

v* :=sup{v € R" : (P,) has at least one positive solution in H}.

Then, by Proposition 2.5, we have 0 < 7 < v* < c0.
Remark. The minimal solution w, of (P,) is increasing with respect to v.
Indeed, suppose v* > v > 7. Since

u

—Au, — ﬁ —upt = nf(@) = (v —n)f >0,

u, > 0 is a supersolution of (P,). Since f(z) > 0 and f(z) # 0, u = 0 is a
subsolution of (P,) for n > 0. By the standard barrier method, we can obtain
a solution u, of (P,) such that 0 < u, < u, on RY. We note that 0 is not a
solution of (P,), v > n and u,, is a minimal solution of (P,). Therefore, because
uy, also can be derived by an iteration scheme with initial value u(g) = 0, by the
maximal principle, 0 < u,, < u, in RY which completes the proof. .

Now, consider the corresponding eigenvalue problem:

¥ -2 . N
—Ap—ps =Av)(p—Dup "¢ in R,
(3.1), ||

pin H.

Let A\ be the first eigenvalue of (3.1),; i.e.,

AL =M(v mf{/ <V 1> — u||¢|2) tp€eH,(p—1) /u’l'fQ(pde =1}

Then, 0 < A\; < oo and we can achieve the minimum by some function ¢, =
p1(v) € H and 1 > 0in Q if v €]0,v*] (cf. [17]).
We summarize basic properties for A;(v) :

Lemma 3.1. (i) For v €]0,v*], \i(v) > 1,
(i) If 0 < n < v < v*, then A\ (v) < Ai(n),
(11i) M1 (v) = 400 asv — 0F.

Proof. (i) For given 0 < n < v < v*, every solution u, of (P,) with v €]0,v*[
is a supersolution of (P,). By Taylor expansion, we have

—A(uy —uy) — M#(UV —uy) = (uﬁ_l - ug_l) +w—=n)f

> (p— D ~(u, — uy)
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and moreover, we get
/V(uy —uu)Ver — u/ w@l = / (ub™t —ub™ ) o1 + /(V —n)fe
> (r-1) [ - w)en
Therefore, from (3.1),, we have
[T = [ o a1 [ - e,

which implies A\ (v) > 1.
(ii) Since, for 0 <n <v <v*, u, < u, and

e [ eme®) = [ (Tem - a2 ) o)
“ M@)o [ @),

we have A1(n) > A1 (v).
(iii) First, we show that ||u,|| — 0 as v — 0T. Let ¢ = u,,, Multiplying (P,)

by u,, we have,
2
(vl -ul2) = [aeo [ 1

and hence, for € > 0, we have, by Young’s inequality with e,

1 €
1 —— — SV w2 < Co?||f]]2 for e > 0.
(1= 5oz 5 ) el < calif]

Thus, for € > 0 small, we have ||u,||? < C.v? for some constant C, > 0, and
hence, ||u,|| = o(1) as v — 0F.

Next, Multiplying (3.1), by ¢1,

we have,

lorllP = M) - 1) [ a2}

<ne-1 ([ w)w)/p ([«) .

2
§/\1(p—1)14(;”/2||u,,||”_2 |V<p1|2—u|<pl| for some C' >0
22|

and thus, 0 < AS/Q < M (v)(p — 1)||uy|[P~2. Therefore, from (iii), we have the
desired result. This completes the proof. m
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Lemma 3.2. Let u, be a positive solution of (1.3), for which \1(v) > 1. Then,
for any g € H, the problem:

w
(3.2) —Aw — MW =({p-Dut2w+g(z), weH
has a solution.

Proof. Consider the functional defined by

1 wl? 1 _
J(w):2/<Vw2—y|m||2> —i(p—l)/uﬁ 2w2—/gw, w € H.

From Hélder’s inequality and Young’s inequality, we have, for any € > 0,

1 1 €
> (1_ 2 € 2 2
9w) 2 (5 = g5 ) ol = Sl = Clal?

_ (1 1 € 2 2

~(5- 3007~ 5) IulP = Cilal?
and hence, for small € > 0, there exist C; > 0 and C5 ¢ > 0 such that
(33) J(w) > C1 | |w|* = Ca.cllg]l2.

Let {wy,} C H be the minimizing sequence of J(-). From (3.3), we have {w,}
is bounded in H. Hence, passing subsequence, we may have that there exists
w € H such that

wy, — w weakly in H as n — oo,
Wy, — W a.e. in as n — 0o
Here, we also note that
Yw, — Vw a.e. in RN as n — oc.
And
uP~! — 4P~ weakly in (LP(RV))* as n — oo.
By Fatou’s Lemma
[w][* < liminf ||w,|[?.
n— oo
Since {wy,} is bounded in H, from (1.1), [uE~2w? < oo for n > 1 imply
lim [ gw, = /gw, lim [ w2 2w? = /u£*2w2
n—oo n—oo
and hence,
J(w) < lim J(w,) = d.
n—oQ
Then, J(w) = d and w is a minimizer of J. Therefore, w is a critical point of .J

and w is a solution of (3.2). This completes the proof. =

Proposition 3.3. For v = v*, the problem (P,) has a positive solution u,~ and
A1 (v*) = 1. Moreover, the solution u,« is unique in H.
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Proof. For v €]0,v*[, multiplying (P,) by u,, we have, by (3.1),,

J (et )= oo

; 2 |uV|2> *
<A1(y><p_1>/(|wvl e ) VI e

_ 1 ev* , U )
N (M(V)(p—l) + 92 >||uu|| + 2€||f||*

By taking ¢ > 0 small enough, there exists an constant C. > 0 such that
[luy|| < C¢ for all v €]0,v*[. Then, there exists u,~ in H such that v, mono-
tonically increasing to u,~ as v — v* and u,, — u,~ weakly in H as v — v*.
Hence, u,~ is a positive solution of (P,) with ¥ = v*. We note that A\ (v) is a
continuous function of v €]0, v*].

Define F: R!' x H — H~! by

F(v,u) == Au—i—u' B + (@h)P +vf(x) in R\ {0}

Since u, — u,. weakly as v — v*, from Lemma 3.1, A(v*) > 1. If \(v*) > 1,
then Fy,(v*, uy+)p = Ap + uﬁ + (p — 1)u”=?p = 0 has no nontrivial solution.
From Lemma 3.2, F(v*,u,+) is an isomorphism of R! x H onto H~!, and by
the implicitly function theorem to F, we find a neighborhood |v* — ¢, v* + {]
of v* such that (P,) possesses a positive solution if v €]v* — 4, v* + [, which
contradicts the definition of v*. Therefore, A\ (11*) = 1.

Suppose v, is a positive solution of (P,+). Then v,, > u,- since u,~ is
minimal. Let w = vy« — uy~. Then, since A1 (v*) = 1, we have
p—2

—Aw — ,ul E > (p— Db w.

Since 1 = ¢1(v*) is the eigenfunction of the problem (3,1),«, we have,

(p— 1)/U’$?2<p1w = /Vstol —u/ |<p|12 > (p— 1)/ ulwiy

and hence, w = 0. This completes the proof. m

Proposition 3.4. The minimal solution u, of (P,) increasing continuously
to uy+ as v — v* and uniformly bounded in H for all p €]0,v*]. Moreover,
[|luy]| < OW?) as v — 0F.

Proof. Tt suffices to find the uniform bound of u,. Multiplying (P,) by w,, we

have
/<|Vuy|2 V|2) /up+/ufu,,

and hence, for € > 0, we have

| ! N sl < ZIfI2 fore> 0
- — = AP < =IIf: e>0.
MOCERRE %
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Therefore, for € > 0 small, we have ||u,|| < C.v for some constant C. > 0.
Next, fix 7 €]0,v*]. If v increases to 7, then w, is increasing up to u, and
u, — u, in H. If it is not the case, then, by multiplying u, on (P,) again, we
have, Lemma 4.3 in [8],

]2 < / WP Vg + 0" (fur)

and so
| < ST |ur| P 4 v*[| £ll] ur ]

Hence, there exists a sequence {u,,} in H conversing weakly to a solution @ of
(Pr) but @ # u,. Since {u,,} coverge to @ strongly in local L' sense, by the
maximum principle, we have u,;, < @ < u, which leads a contradiction to the
minimality of u,. This completes the proof. =

Remark 3. From Proposition 3.4 , we have that A(v) is a continuously decreasing
function from [0, v*] onto [1,00[ and ||u,|| = o(1) as v — 0.

Next, we are going to find the second solutions bigger than minimal solutions.
In order to get another positive solution of (P,), we consider the following
problem:

—Av—p—
(3.4), |z|?
veH, v>0in

=" +u,)Pt =™t in Q,

and the corresponding variational functional:

J(v) = 1 |Vo|? — ,uw 1 ((v+ +uy)? —ub fpupfllﬁ)
v . 2 |_’L‘|2 p v v v

for v € H.

Clearly, we can have another positive solution U, = u, + v, if we show the
problem (3.4), possesses a positive solution for v €]0, v*[. We look for a critical
point of J, which is a weak solution of (3.4), by employing standard argument
of the Mountain Pass method without the (PS) condition.

In the proof of the existance second solution, we make use of some arguments
in [7].

Theorem 3.5. The problem (P,) possesses at least two positive solutions for
all v €]0, v*].



562 W. S. KIM

Proof. (i) Let v € H \ {0}, Then, for ¢ > 0, by Young’s inequality,

Ju(v):;/(w |2—u| |2)dx—/A (uy + 0P~ — ) dide
L)oo
/ / (wy + 1P — (p— L)ul 2] dtda
() (o) ][ e
s (1) ol =5 [z’ dw%/(v*)”dw
|

1
S22 ___ ¢ 2 _ Zeg-1/2),1p
>3 (13— s ) Wl = o571

for some constant C. > 0. Hence, for sufﬁc1ently small € > 0, there exist p >
0,6 > 0 such that

Y

v

J(®)log, = 0> 0,

where B, = {u € H: |[u|| < p}.
(ii) Let v € H,v > 0 and v # 0, then, for ¢t > 0, we have

(3.5)

J,(tv) = /(v |2—;L| ||2) ;/[(uy+tv)P—u§—puiy’*1tv] da

5 [ (9= ) 2 [ biras

2 P
< 5l 1> = —Ivll?

| /\

Hence, we deduce
Ju(tv) = —oo

as t — 0o. Therefore, for any 0 # v € H with v > 0, there exists a constant
to > 0 such that J,(tov) <0 for ¢t > to.

Observe that

Next, we are going to show that

sup J, (tug) < —SN/Q
>0

for some uyg.
Indeed, for small ¢; > 0, by Proposition 2.3 and its remark, any 0 < t < t1,
gy (tug) < %SN/Q for some uy € H. Choose ty > t1 such that J, (tug) < 0 for
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all t > to, For t; <t < o, from (3.5), we have

2 U
Ju(tuo) < 2/<|Vu02—u' !

2 P
| )dw— —/\u0|pdm
4 p

t tP N, 1 N
— - - /2<7 /2
< )S NS .

2 p
Let
[':={y € €([0,1], H);7(0) = 0, ¥(1) = tauo}
and
¢y = infyermax,eo,1)J, (7(5))-

Then, we have
1
(3.6) 0 < a<c, <supsodu(tug) < NSN/2.
We now applying the Mountain Pass Theorem without Palais-Smale condi-
tion in [4] to get a sequence {v,} C H such that
(3.7) Jo(vn) = ¢y, J,(vy) =0 in H.
Then, we see that {v,} is bounded in H. Hence, there exists a subsequence, say
again, {v,} such that
v, — v, weakly in H,
Vv, — Uy a.e. in £,
Vv, — Vv, a.e. in (Q,
and
(v + )’ =l (v uy)p_l —uP™t weakly in (LP(Q))".

. . ~1 _
Hence, v, is a weak solution of —Av — prz = (vt + )’ —upL

Using the maximal principle, we get v, > 0 in Q. Furthermore, ||v, || = o(1)
since < J) (vp),v,, >— 0 as n — oo. Set u, = v, + u, and u := v + u,. We
claim that u # w,. Suppose u = u,,. Then v,, = u,, —u converges weakly but not
strongy to 0 in H because ¢, > 0. Now, we observe that, by Holder’s inequality,

J ety = ey

=(p— 1)/(1;:{ +0u,,)p_2 Uy,

, (p—2)/(p—1) 1/(p=1)
<(p-1) { / (v + 0u,) U;] { / ug—lvg]
=o(1)

for some 0 < 0 < u,, and thus
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ol = [ T+ = ()™t + ot
= / (v +uy)p71vf{ +0(1)
= [log 11§ + o(1).
Then, by the Sobolev-Hardy inequality:(1.1),
Sllvrlly < Mol = llo |1 + o(1),

which gives us that ||v;"|| > SN/2. On the other hand,
I T,
Ky (un) ::§||un|| +;;||Un +uV||p_V<faun>

1 1
= 5l - plwlly = v < frw > +J(vn)

- HZI(U'V) + Jl/(vn)
=K, (uy) + ¢, +o(1).

Moreover, from Brezis-Leb Lemmalcf.[3]] that,

1

K, (un) = el g+ Il 1E) = v < Fos > +o(1)

1

5 Ul + llonll?)

=K 1 + 2_1 +1|p 1

= K (w) + 5zl o 15 + o(1)
p
1

= Ky (w,) + Fllog Il + o(1).
Then, we have
1
¢y < ﬁSNm < ||U:H£ =c, +o(1),

a contraction. Therefore, v, := v > 0 and U, := v, + u, is a second solution to
(P,). This completes the proof. =

Consequently, we have:

Theorem 3.6. Assume f € H, f >0, f #0 inQ and ||vf||« < C%. Then there
exists a positive constant v* > 0 such that (P,) possesses at least two positive
solutions for 0 < v < v*, a unique solution for v = v* and no positive solution
ifv>v*.
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4. Bifurcation

In order to study the uniqueness of second the solutions U, and bifurcation
phenomenon, we consider following eigenvalue problem:

NG uljz =)o — UL,
¢ in H.

(4.1),

Let 1 be the first eigenvalue of (4.1), ;i.e.,

2
m=m0) = it { [1voP = [o-vuze =1},

The infinum is achieveed by some functlon ¢ and ¢ > 0 in Q.

In the proof of the following lemma, we make use of arguments in [2].

Lemma 4.1. Let U, be a second positive solution of (P,) obtained in Theorem
3.5. Then m(v) <1 for 0 <v < v*.

Proof. Suppose contrary that n;(u) > 1. Let ¢1 > 0 be the eigenfunction for
the eigenvalue n; and 9 := U, — u,, > 0. Then ¢; and 1 satisfies

(4. )A¢1+M|¢|2 (p—1)UP2¢; < 0 and A¢+u|¢|2

(p— 1)UL % >0,
respectively. Set o = ¢/¢q;i.e., Y = o¢y. Then, by (4.2),

2
(4.3) oV (¢iVeo) = YA — A¢1% > 0.

1

Let ¢ be a C* function on R* such that 0 < ¢((¢) <1
lfor0<t<1,
(t {Ofort>2.

For R > 0, set Cr(t) :=¢ (‘iRl) in RY. Multiplying (4.3) by (% and intergrating

over RY, we have by Green’ theorem,

/Cﬁqﬁ?\voﬁ <2 ‘/gﬁ%gRavo-ng
<2 [ GaveP
R<|z|<2R
[ etver
R<|z|<2R

/ 32 |Vo?
R<|z|<2R

2 1/2
{ / ¢?02ch|"’}
1/2 1/2
S
R<|z|<2R

1/2

< Ci

< Gy
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for some constants C; and C5 independent of R. Then,

/ (262 Vol? < C

for some constant C's > 0 independent of R.
Letting R — 0o, we see that

[ évet <.
RN
But then it follows that the last term in (4.4) tends to 0 as R — oo, so that
¢1|Val* = 0.
Rn

Therefore, o is a positive constant and by (4.2), ¢ = ¥ = U, — u,, and thus
U, = u,, which leads a contradiction. This completes the proof. =

Lemma 4.2. For v €]0,v*[, U, decreases contonusely to u,~ as v — v* in H.
Moreover,

(i) U, = uy~ as v — v* by the uniqueness of u,,

(i) lim, o+ ||U, || = SN/4.

Proof. First, we note that

(3-3 )1 =glouie =2 [ (vz+v [ 0.)
V(lj))/fUuz//fuyu/fvu

1 1 1
+7||“V||2+*Hvu||2+/VUVVUV+/uVUV—f/Uf,’
2 2 »

> (1 - ;) / fUs + Ty (w) + Hw,),

where  H(u) := 3|[u||> — %fup —v [ fu.
From Holder’s and Young’s inequality, for € > 0, we have
(p—2_dp—U

2p 2p

p—1 1
VIO < o212 + 58V + Hw),

Since

H (u,) is uniformly bounded for v € (0, v*]. Moreover, by the remark of Propo-
sition 3.4, H(u,) = o(1) as v — 07. Taking € > 0 small enought, we have
[|U,|| < C for some C > 0. Since 0 < u,, < U,,, (i) follows from Proposition 3.3
and Proposition 3.4.
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For (ii). By (ii) of Lemma 3.1, and (i) and (iii) in the proof of Theorem 3.5,
there exists d > 0 such that

1
0<d<J,(v,)=HU,) — H(u,) < NSN/Q
and thus, since J! (U,)U, =0,

1 p—1 1
H < = 2 <H —gN/2,

Since U, is uniformly bounded,
1 1
_ <+ 2 o L gN/2 '

(4.5) d+o(l) < SU|I° < 557" +o(1)
By Sobolev’s inequality, S||U,|[Z < [|U,|[* = [|U,][5 4 o(1). Then |[U,[5 >
SN/Z 4 o(1) and so ||U,||? > SN/2 + 0(1). Therefore by (4.5), we have

lim [|U, ]| = SN/,

v—0t

Now, fix p €]0,v*]. Suppose p increase to p, then U, is decreasing to U, in H
and we have

U] < STPRIUIP + plIf ]
and so, there exists a sequence U,; conving weakly to a solution U of (P,) in
H with p=v but U # U,. By the maximum principle, we have U, < U< U,
which contradicts the uniqueness of solutions bigger than wu, . Therefore, U, is
decreasing continuously to U, and U, — U, in H. This completes the proof. =

Lemma 4.3. et V be a positive supersolution of (P,) bigger than u, then V <
U,.

Proof. Suppose V' > U, in 2, then W =V — U, satisfies
w-1 [vr2wo < [VW Vo —me-1) [vr2we
and thus, 71 (v) > 1, which leads a conrradiction. This completes the proof. =

Remark 4. From Lemma 4.1 and Lemma 4.3, we can see the uniqueness of
second solutions which are bigger than the minimal solutions w,,.

Now, we state basic properties of the eigenvalue problem (4.1), :

Lemma 4.4. (i) 1/(p—1) <m(v) <1 for 0 <v < v*,
(ii) m(v) = 1/(p—1) = 1/(p—1) asv — 0T,
(i) m(v) = 1 as v — v*.

Proof. (i) Since ¢1 > 0 is an eigenvector corresponding to the the first eigen-
value 171 (u), we know

m0)p-1) [Uz0r = [ VO,V = [vrtons [ ror
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mw)p - 2/UP 1¢1—z//f¢1.

Therefore, by Lemma 4.1, 1 > ny (u) >
(ii) As p— 07T,

and so,

L. (v) < LT SN +o(1) 5L
p—1 MG IDIE T -1 (SN2 1o(1))  p—1

Thus, n1(v) = 1/(p—1) as v — 0.
(iii) follows from (i) of Lemma 3.1, Proposition 3.3, Lemma 4.1 and (i) of
Lemma 4.2. This completes the proof. =

In order to show the existence of a bifurcation point, we make use of Theorem
3.2 is in [5].
Now, we have:

Theorem 4.5. (i) The set {U,} is bounded uniformly in H,
(ii) (V*,uy~) is a bifurcation point.

Proof. (i) It follows immediately from the proof of Lemma 4.2.
(ii) For this, define F : R x H — H~! by

Fr,u) == Au—u+ uh)? '+ uf(z).

It is easy to see that F(v,u) is differentiable at solution point (v, u) for |0, v*[

and

Fy(v,u)w = Aw —w + (2° — Du? 2w
is an ismorphism of R x H onto H~!. Then, by the Implicit Function Theorem,
the solution of F'(v,u) near (v,u,) are given by a single continuous cuver and
Upn — 0in H™1 as v — 0.

We now are going to prove that (v*,u,«) is a bifurcation point of F. Since
Fo,(p*,uu )¢ = 0,6 € H'(RV) has a solution ¢1 > 0in RN, A (F, (p*, uye)) =
span{¢ } is one dimensional and codimZ (F, (1*,u,+)) = 1 by the Fredholm
alternative. Suppose there exists v € H'(RY) satisfying

Av—v+ (2" =-1) 2*_20**f( )-
Then
0= / (Vv Vo1 +vor — (28 - 1) Uii_%ébl) = /ffi)l,

which is impossible because 0 # f > 0. Hence, Fy, (1", uy-) € Z (Fy (1", up-)) .
Thus, by Theorem 3.2 in [5], (u*, u,-) is the bifurcation point near which, the
solution of (p,) form a curve (u* + 7(s),u, + s¢1 + 2(s)) with s near s = 0
and 7(0) = 7/(0) = 0,2(0) = 2/(0) = 0. Finally, we will show that 7”(0) < 0
which implies that the bifurcation curve only turns to the left in the pu—plane.
For this, differentiate (P,) in s, we have

(4.6) Aug —us + (25 = 1) u? 2uy 4+ 7/(s) f(z) =0,
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where u, = ¢1 + 2/(s). Multiplying F,, (u*, uyu-) ¢1 = 0 by us and (4,6) by ¢1,
integrating and substracting, we have

7o) [ for =@ = 1) [ (437 = (e + 501+ 206)7 ) 01+ 2 (9)n

(2 =12 =) [ (e + 00601+ 267 (814 22 ) 61+ 26
for some 6(s) € (0,1). Therefore,
7 [ o= (timen ™) [ o1 =@ -2 [w)7 o

and 7”(0) < 0. This completes proof. =
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