DOI QR코드

DOI QR Code

Characterization of Pasteurella multocida from pneumonic lungs of slaughtered pigs in Korea

  • Kim, Jong Ho (Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency) ;
  • Kim, Jong Wan (Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency) ;
  • Oh, Sang-Ik (Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency) ;
  • Kim, Chung Hyun (Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency) ;
  • So, ByungJae (Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency) ;
  • Kim, Won-Il (Laboratory of Immunology, College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Ha-Young (Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency)
  • Received : 2018.09.12
  • Accepted : 2018.09.22
  • Published : 2018.09.30

Abstract

Pasteurella multocida is an opportunistic organism that plays a significant role in porcine respiratory disease complex (PRDC). In the current study, we provide nationwide information of P. multocida isolates from pneumonic lungs of slaughter pigs by determining their prevalence, subspecies, biovars, capsular types, virulence-associated genes, and minimum inhibitory concentrations. P. multocida was the second most frequently confirmed (19.2%) bacterial pathogen and most of the isolates (88.9%) showed simultaneous infection with other respiratory pathogens, especially Mycoplasma hyopneumoniae (63.3%, P<0.001) and porcine circovirus type 2 (53.3%, P=0.0205). Of 42 isolates investigated, 41 (97.6%) were identified as P. multocida subspecies multocida, and only one isolate was identified as subspecies septica (biovar 5). All the isolates were capsular type A and the most prevalent biovar was biovar 3 (40.5%), followed by biovar 2 (31.0%). Comparing virulence-associated genes and biovars, all biovar 2 isolates exhibited $hgbB^-pfhA^+$ (P<0.001); all biovar 3 (P=0.0002) and biovar 13 (P=0.0063) isolates presented $hgbB^+pfhA^-$. Additionally, all biovar 2 (P=0.0037) isolates and most of biovar 3 (P=0.0265) isolates harbored tadD. P. multocida showed the highest resistance levels to oxytetracycline (73.8%), followed by florfenicol (11.9%). Continuous monitoring is required for surveillance of the antimicrobial resistance and new emerging strains of P. multocida in slaughter lines.

Keywords

References

  1. APQA, 2016. Antimicrobial use and antimicrobial resistance monitoring in animals and animal products. Animal and Plant Quarantine Agency (APQA) Gimcheon, 2016.
  2. Aski HS, Tabatabaei M, 2016. Occurrence of virulence-associated genes in Pasteurella multocida isolates obtained from different hosts. Microb pathogenesis 96: 52-57. https://doi.org/10.1016/j.micpath.2016.04.008
  3. Atashpaz S, Shayegh J, Hejazi M.S, 2009. Rapid virulence typing of Pasteurella multocida by multiplex PCR. Res. Vet. Sci. 87: 355-357. https://doi.org/10.1016/j.rvsc.2009.04.004
  4. Blackall PJ, Pahoff JL, Bowles R, 1997. Phenotypic characterisation of Pasteurella multocida isolates from Australian pigs. Vet. Microbiol. 57: 355-360. https://doi.org/10.1016/S0378-1135(97)00111-9
  5. Cardoso-Toset F, Gomez-Laguna J, Callejo M, Vela AI, Carrasco, L, Fernandez-Garayzabal JF, Maldonado A, Luque I, 2013. Septicaemic pasteurellosis in free- range pigs asso- ciated with an unusual biovar 13 of Pasteurella multocida. Vet. Microbiol. 167: 690-694. https://doi.org/10.1016/j.vetmic.2013.08.005
  6. Choi C, Kim B, Cho WS, Kim J, Kwon D, Cheon DS, Chae C. 2001. Capsular serotype, toxA gene, and antimicrobial susceptibility profiles of Pasteurella multocida isolated from pigs with pneumonia in Korea. Vet. Rec. 149: 210-212. https://doi.org/10.1136/vr.149.7.210
  7. CLSI. 2015. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals; 3rd ed CLSI supplement VET01S, PA.
  8. Dayao DAE, Gibson JS, Blackall, PJ, Turni C. 2014. Antimicrobial resistance in bacteria associated with por cine respiratory disease in Australia. Vet. Microbiol. 171: 232-235. https://doi.org/10.1016/j.vetmic.2014.03.014
  9. El Garch F, de Jong A, Simjee S, Moyaert H, Klein U, Ludwig C, Marion H, Haag-Diergarten S, Richard-Mazet A, Thomas V, Siegwart E. 2016. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe, 2009-2012: VetPath results. Vet. Microbiol. 194: 11-22. https://doi.org/10.1016/j.vetmic.2016.04.009
  10. Ewers C, Lubke-Becker A, Bethe A, KieBling S, Filter M, Wieler, L.H., 2006. Virulence genotype of Pasteurella multocida strains isolated from different hosts with various disease status. Vet. Microbiol. 114: 304-317. https://doi.org/10.1016/j.vetmic.2005.12.012
  11. Fablet C, Marois C, Dorenlor V, Eono F, Eveno E, Jolly JP, Le Devendec L, Kobisch M, Madec F, Rose N. 2012. Bacterial pathogens associated with lung lesions in slaughter pigs from 125 herds. Res. Vet. Sci. 93: 627-630. https://doi.org/10.1016/j.rvsc.2011.11.002
  12. GarcIa N, Fernandez-Garayzabal JF, Goyache J, Dominguez L, Vela AI. 2011. Associations between biovar and virulence factor genes in Pasteurella multocida isolates from pigs in Spain. Vet. Rec. 169: 362. https://doi.org/10.1136/vr.d4869
  13. Grest P. Keller H, Sydler T, Pospischil A. 1997. The prevalence of lung lesions in pigs at slaughter in Switzerland. Schweizer Archiv fur Tierheilkunde 139: 500-506.
  14. Hansen MS, Pors SE, Jensen H, Bille-Hansen V, Bisgaard M, Flachs EM, Nielsen OL. 2010. An investigation of the pathology and pathogens associated with porcine respiratory disease complex in Denmark. J. Comp. Path. 143: 120-131. https://doi.org/10.1016/j.jcpa.2010.01.012
  15. Jamaludin R, Blackall PJ, Hansen MF, Humphrey S, Styles M. 2005. Phenotypic and genotypic characterisation of Pasteurella multocida isolated from pigs at slaughter in New Zealand. N. Z. Vet. J. 53: 203-207. https://doi.org/10.1080/00480169.2005.36505
  16. Kim KH, Chang YS, Cho MH, Kim SW, Kim YE, Kim BH. 1999a. An abattoir survey of incidence of pneumonia in slaughter pigs and an investigation of microbiology of affected lungs. Korean J. Vet. Serv. 22: 121-128.
  17. Kim SK, Lee YS, Jyeong JS, Kim SW. 1999b. Biochemical properties and antimicrobial susceptibility of Pasteurella multocida isolated from pneumonic Lungs in slaughtered animals. Korean J. Vet. Serv. 22: 79-84.
  18. Koh HB, Lim JH, Ahn SH. 2000. Isolation and Antimicrobial Susceptibility of Pasteurella multocida, Streptococcus suis, Actinobacillus pleuropneumoniae from Pneumonic Lungs of Slaughtered Pigs in Korea. Kor. J. Vet. Publ. Hlth 24: 339-348.
  19. Lee KE, Jeoung HY, Lee JY, Lee MH, Choi HW, Chang KS, Oh YH, An DJ, 2012. Phenotypic characterization and Random Amplified Polymorphic DNA (RAPD) analysis of Pasteurella multocida isolated from Korean pigs. J. Vet. Med. Sci. 74: 567-573. https://doi.org/10.1292/jvms.11-0418
  20. Maes D, Deluyker H, Verdonck M, Castryck F, Miry C, Vrijens B, Ducatelle R, De AK. 2001. Non-infectious factors associated with macroscopic and microscopic lung lesions in slaughter pigs from farrow-to-finish herds. Vet. Rec. 148: 41-46. https://doi.org/10.1136/vr.148.2.41
  21. Mutters R, Ihm P, Pohl S, Frederiksen W, Mannheim W. 1985. Reclassification of the genus Pasteurella Trevisan 1887 on the basis of deoxyribonucleic acid homology, with proposals for the new species Pasteurella dagmatis, Pasteurella canis, Pasteurella stomatis, Pasteurella anatis, and Pasteurella langaa. Int. J. Syst. Bacteriol. 35: 309-322. https://doi.org/10.1099/00207713-35-3-309
  22. Nedbalcova K, Kucerova Z. 2013. Antimicrobial susceptibility of Pasteurella multocida and Haemophilus parasuis isolates associated with porcine pneumonia. Acta Vet. 82: 3-7. https://doi.org/10.2754/avb201382010003
  23. Opriessnig T, Gimenez-Lirola LG, Halbur PG. 2011. Polymicrobial respiratory disease in pigs. Anim. Health Res. Rev. 12: 133-148. https://doi.org/10.1017/S1466252311000120
  24. Portis E, Lindeman C, Johansen L, Stoltman G, 2013. Antimicrobial susceptibility of porcine Pasteurella multocida, Streptococcus suis, and Actinobacillus pleuropneumoniae from the United States and Canada, 2001 to 2010. J. Swine Health Prod. 21: 30-41.
  25. Sohn JH, Choi SK, Cho GJ. 2009. Capsular serogroups and toxA gene of Pasteurella multocida isolated from Pneumonic Lung Lesions of Swine. J. Vet. Clin. 26: 457-462.
  26. Sohn JH, Kim YH, Shin SH, Lee EM, Kim ST, Cho MH, Yun MJ, 2014. Characteristics and antimicrobial resistance patterns of Pasteurella multocida isolated from swine in Gyeongbuk province. Korean J. Vet. Serv. 37: 165-171. https://doi.org/10.7853/kjvs.2014.37.3.165
  27. Sweeney MT, Lindeman C, Johansen L, Mullins L, Murray R, Senn MK, Bade D, Machin C, Kotarski SF, Tiwari R. 2017. Antimicrobial susceptibility of Actinobacillus pleuropneumoniae, Pasteurella multocida, Streptococcus suis, and Bordetella bronchiseptica isolated from pigs in the United States and Canada, 2011 to 2015. J. Swine Health Prod. 25: 106-120.
  28. Tang X, Zhao Z, Hu J, Wu B, Cai X, He Q, Chen H. 2009. Isolation, antimicrobial resistance, and virulence genes of Pasteurella multocida strains from swine in China. J. Clin. Microbiol. 47: 951-958. https://doi.org/10.1128/JCM.02029-08
  29. Townsend KM, Boyce JD, Chung JY, Frost AJ, Adler B. 2001. Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system. J. Clin. Microbiol. 39: 924-929. https://doi.org/10.1128/JCM.39.3.924-929.2001
  30. Townsend KM, Frost AJ, Lee CW, Papadimitriou JM, Dawkins HJ, 1998. Development of PCR assays for species-and type-specific identification of Pasteurella multocida isolates. J. Clin. Microbio. 36: 1096-1100.
  31. Varga Z, Sellyei B, Magyar T. 2007. Phenotypic and genotypic characterisation of Pasteurella multocida strains isolated from pigs in Hungary. Acta Vet. Hung. 55: 425-434. https://doi.org/10.1556/AVet.55.2007.4.2