DOI QR코드

DOI QR Code

Studies on Antioxidant, Anti-Inflammation, and Collagenase Inhibitory Effects of Extracts from Plants of The Salix genus

버드나무 속 식물 추출물의 항산화, 항염 및 콜라게나제 저해 활성 연구

  • Jeong, Yong Un (Department of Integrated Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University) ;
  • Park, Young Jin (Department of Integrated Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University)
  • 정용운 (건국대학교 의료생명대학 바이오융합과학부, 의료생명연구소) ;
  • 박영진 (건국대학교 의료생명대학 바이오융합과학부, 의료생명연구소)
  • Received : 2018.08.07
  • Accepted : 2018.09.12
  • Published : 2018.09.30

Abstract

This study was carried out to evaluate the possibility of willow plants (the genus Salix) as a cosmetic material. DPPH radical scavenging abilities of 70% ethanol extracts of S. gracilistyla, S. pseudolasiogyne, and S. koriyanagi were significantly increased compared to control. In addition, the treatment of three species of willow plant extracts significantly inhibited the production of nitric oxide (NO) in RAW 264.7 cells, indicating that they had anti-inflammatory activity, and all of them had collagenase inhibitory activity. Among them, the extracts of S. gracilistyla extracts exhibited the highest collagenase inhibitory activity. As a result of analyzing the collagenase inhibitory activity against the solvent fraction of S. gracilistyla extracts, water and butanol fractions showed the highest collagenase inhibitory activity. These results suggested that S. gracilistyla among the willow plants had high collagenase inhibitory activity, and thus it can be utilized for cosmetics as an effective functional cosmetic material in the future.

본 연구는 버드나무 속 식물의 화장품 소재로써의 활용 가능성을 평가하기 위해 수행하였다. 버드나무 속 식물 중 갯버들, 능수버들 및 키버들 70% 에탄올 추출물의 DPPH radical 소거능 분석을 통한 항산화 활성을 평가한 결과 모든 추출물이 대조군에 비해 DPPH radical 소거능이 유의적으로 증가하였다. 또한 3종의 버드나무 속 식물 추출물 처리는 RAW 264.7 세포의 nitric oxide (NO) 생성을 유의적으로 억제하여 항염 활성이 있는 것으로 확인되었으며, 모두 콜라게나제 저해 활성이 있는 것으로 확인되었다. 그 중 갯버들 추출물이 가장 높은 콜라게나제 저해활성을 나타내어 갯버들 추출물의 용매 분획물에 대한 추가적인 콜라게나제 저해활성을 분석한 결과, 물 및 부탄올 분획물이 가장 높은 콜라게나제 저해활성이 있는 것으로 확인되었다. 결과적으로 버드나무 속 식물 중 갯버들은 높은 콜라게나제 저해활성이 있는 것으로 확인되어 향후 효과적인 기능성 화장품 소재로 활용 가능 할 것으로 사료된다.

Keywords

References

  1. T. Quan, T. He, S. Kang, J. J. Voorhees, and G. J. Fisher, Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-type II receptor / Smad signaling, Am. J. Pathol., 165, 741 (2004). https://doi.org/10.1016/S0002-9440(10)63337-8
  2. S. Chakraborti, M. Mandal, S. Das, A. Mandal, and T. Chakraborti, Regulation of matrix metalloproteinases: an overview, Mol. Cell. Biochem., 253, 269 (2003). https://doi.org/10.1023/A:1026028303196
  3. W. D. Shingleton, T. E. Cawston, D. J. Hodges, and P. Brick, Collagenase: a key enzyme in collagen turnover, Biochem. Cell Biol., 74, 759 (1996). https://doi.org/10.1139/o96-083
  4. E. Tripoli, M. La Guardia, S. Giammanco, D. Di Majo, and M. Giammanco, Citrus flavonoids: molecular structure, biological activity and nutritional properties: A review, Food Chem., 104, 466 (2007). https://doi.org/10.1016/j.foodchem.2006.11.054
  5. M. Makimura, M. Hirasawa, K. Kobayashi, J. Indo, S. Sakanaka, T. Taguchi, and S. Otake, Inhibitory effect of tea catechins on collagenase activity, J. Periodontol., 64, 630 (1993). https://doi.org/10.1902/jop.1993.64.7.630
  6. Z. Liu, F. Li, L. Zhang, H. Yu, F. Yu, and J. Chen, The effect of active components from citrus fruits on dentin MMPs, Arch. Oral Biol., 83, 111 (2017). https://doi.org/10.1016/j.archoralbio.2017.07.006
  7. D. Mabberley, Mabberley's plant-book: a portable dictionary of plants, their classification and uses, Cambridge university press, Cambridge (2017).
  8. M. H. Kim, Antioxidant activity and anti-inflammatory effects of Salix Koreensis andersson branches extracts, J. Korean Soc. Food Cult., 33, 104 (2018).
  9. Q. Du, G. Jerz, L. Shen, L. Xiu, and P. Winterhalter, Isolation and structure determination of a lignan from the bark of Salix alba, Nat. Prod. Res., 21, 451 (2007). https://doi.org/10.1080/14786410601083845
  10. A. Freischmidt, G. Jrgenliemk, B. Kraus, S. N. Okpanyi, J. Mller, O. Kelber, D. Weiser, and J. Heilmann, Contribution of flavonoids and catechol to the reduction of ICAM-1 expression in endothelial cells by a standardised willow bark extract, Phytomedicine, 19, 245 (2012). https://doi.org/10.1016/j.phymed.2011.08.065
  11. R. S. Shivatare, M. L. Phopase, D. H. Nagore, S. U. Nipanikar, and S. S. Chitlange, Development and val- idation of HPLC analytical protocol for quantification of salicin from Salix alba L., Inventi Rapid: Pharm Analysis & Quality Assurance, 2015, 61 (2015).
  12. M. S. Alam, G. Kaur, Z. Jabbar, K. Javed, and M. Athar, Evaluation of antioxidant activity of Salix caprea flowers, Phytother. Res., 20, 479 (2006). https://doi.org/10.1002/ptr.1882
  13. X. Li, Z. Liu, X. F. Zhang, L. J. Wang, Y. N. Zheng, C. C. Yuan, and G. Z. Sun, Isolation and characterization of phenolic compounds from the leaves of Salix matsudana, Molecules, 13, 1530 (2008). https://doi.org/10.3390/molecules13081530
  14. L. K. Han, M. Sumiyoshi, J. Zhang, M. X. Liu, X. F. Zhang, Y. N. Zheng, H. Okuda, and Y. Kimura, Anti-obesity action by polyphenols of Salix matsudana in high fat-diet treated rodent animals, Phytother. Res., 17, 1188 (2003). https://doi.org/10.1002/ptr.1404
  15. S. Sultana and M. Saleem, Salix caprea inhibits skin carcinogenesis in murine skin: inhibition of oxidative stress, Ornithine decarboxylase activity and DNA synthesis, J. Ethnopharmacol., 91, 267 (2003).
  16. S. K. Kim, Ph. D. Dissertation, Nambu Univ., Gwangju, Korea (2017).
  17. Korea Biodiversity Information System (http://www.nature.go.kr/ekbi/SubIndex.do).
  18. J. H. Seo, Master's Thesis, Andong National Univ., Andong, Korea (2001).
  19. G. Repetto, A. D. Peso, and J. L. Zurita, Neutral red uptake assay for the estimation of cell viability/cytotoxicity, Nature protocols, 3, 1125 (2008). https://doi.org/10.1038/nprot.2008.75
  20. C. C. Wei, C. W. Yu, P. L. Yen, H. Y. Lin, S. T. Chang F. L. Hsu, and V. H. Liao, Antioxidant activity, delayed aging, and reduced amyloid-${\beta}$ toxicity of methanol extracts of tea seed pomace from Camellia tenuifolia, J. Agric. Food Chem., 62, 10701 (2014). https://doi.org/10.1021/jf503192x
  21. Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products, J. Agric. Food Chem., 46, 4113 (1998). https://doi.org/10.1021/jf9801973
  22. N. Nakatani, Recent advances in the study on natural antioxidants, Nippon Shokuhin Kogyo Gakkaishi, 37, 569 (1990). https://doi.org/10.3136/nskkk1962.37.7_569
  23. K. Nozaki, Current aspect and future condition of phytogenic antioxidants, Fragrance Journal, 6, 99 (1986).
  24. Y. H. Cao and R. H. Cao, Angiogenesis inhibited by drinking tea, Nature, 398, 381 (1999). https://doi.org/10.1038/18793
  25. H. L. Madsen and G. Bertelsen, Spices as antioxidants, Trends Food Sci. Technol., 6, 271 (1995). https://doi.org/10.1016/S0924-2244(00)89112-8
  26. M. P. Kahkonen, A. I. Hopia, H. J. Vuorela, J. P. Rauha, K. Pihlaja, T. S. Kujala, and M. Heinonen, Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem., 47, 3954 (1999). https://doi.org/10.1021/jf990146l