DOI QR코드

DOI QR Code

Research progress of oxide solid electrolytes for next-generation Li-ion batteries

차세대 리튬이차전지를 위한 산화물 고체전해질의 연구동향

  • Received : 2018.11.23
  • Accepted : 2018.12.17
  • Published : 2018.12.30

Abstract

Since the electrification of vehicles has been extended, solid-state batteries have been attracting a lot of interest because of their superior safety. Especially, polymer, sulfide, and oxide based materials are being studied as solid electrolytes, and each type of materials has advantaged and disadvantages over others. Oxide electrolytes has higher chemical and electrochemical stability compared to the other types of electrolytes. However, ionic conductivity isn't high enough as much as that of organic liquid electrolytes. Also, there are many difficulties of fabricating solid-state batteries with oxide based electrolytes because they require a sintering process at very high temperature (above ${\sim}800^{\circ}C$). Herein, we review recent studies of solid-state batteries with oxide based electrolytes about the ionic conductivity, interfacial reactions with Li metal, and preparation of solid-state cell.

Keywords

References

  1. C. Monroe, and J. Newman, "The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces." Journal of The Electrochemical Society 152 [2] A396-A404 (2005). https://doi.org/10.1149/1.1850854
  2. Toyota, https://www.toyota-europe.com/world-of-toyota/environmental-technology/next-generation-secondary-batteries (2012).
  3. A. Manthiram, X. Yu, and S. Wang, "Lithium Battery Chemistries Enabled by Solid-State Electrolytes," Nature Reviews Materials, 2 [4], 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
  4. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, "A Lithium Superionic Conductor," Nature materials 10 [9] 682-686 (2011). https://doi.org/10.1038/nmat3066
  5. R. Murugan, V. Thangadurai, and W. Weppner, "Fast Lithium Ion Conduction in Garnet-Type $Li_7La_3Zr_2O_{12}$," Angewandte Chemie International Edition 46 [41] 7778-7781 (2007). https://doi.org/10.1002/anie.200701144
  6. J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, and J. Akimoto, "Crystal Structure of Fast Lithium-ion-conducting Cubic $Li_7La_3Zr_2O_{12}$," Chemistry letters 40 [1]: 60-62 (2010). https://doi.org/10.1246/cl.2011.60
  7. J. Wolfenstine, J. L. Allen, J. Read, and J. Sakamoto, "Chemical Stability of Cubic $Li_7La_3Zr_2O_{12}$ with Molten Lithium at Elevated Temperature," Journal of Materials Science 48 [17] 5846-5851 (2013). https://doi.org/10.1007/s10853-013-7380-z
  8. A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, and J. Sakamoto, "Surface Chemistry Mechanism of Ultra- Low Interfacial Resistance in the Solid-State Electrolyte $Li_7La_3Zr_2O_{12}$." Chemistry of Materials 29 [18] 7961-7968 (2017). https://doi.org/10.1021/acs.chemmater.7b03002
  9. F. Chen, J. Li, Z. Huang, Y. Yang, Q. Shen, and L. Zhang. "Origin of the Phase Transition in Lithium Garnets," The Journal of Physical Chemistry C 122 [4] 1963-1972 (2018). https://doi.org/10.1021/acs.jpcc.7b10911
  10. N. Bernstein, M. D. Johannes, and K. Hoang, "Origin of the Structural Phase Transition in $Li_7La_3Zr_2O_{12}$," Physical Review Letters 109 [20] 205702 (2012). https://doi.org/10.1103/PhysRevLett.109.205702
  11. T. Thompson, J. Wolfenstine, J. L. Allen, M. Johannes, A. Huq, I. N. David, and J. Sakamoto, "Tetragonal vs. Cubic Phase Stability in Al-free Ta Doped $Li_7La_3Zr_2O_{12}$(LLZO)," Journal of Materials Chemistry A 2 [33] 13431-13436 (2014). https://doi.org/10.1039/C4TA02099E
  12. J. L. Allen, J. Wolfenstine, E. Rangasamy, and J. Sakamoto, "Effect of Substitution (Ta, Al, Ga. on the Conductivity of $Li_7La_3Zr_2O_{12}$." Journal of Power Sources 206 315-319 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.131
  13. L. Buannic, B. Orayech, J. M. L. Del Amo, J. Carrasco, N. A. Katcho, F. Aguesse, W. Manalastas, W. Zhang, J. Kilner, and A. Llordes, "Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in $Li_{7}La_{3}Zr_{2}O_{12}$ Solid Electrolyte," Chemistry of Materials 29 [4] 1769-1778 (2017). https://doi.org/10.1021/acs.chemmater.6b05369
  14. L. J. Miara, W. D. Richards, Y. E. Wang, and G. Ceder, "First-Principles Studies on Cation Dopants and Electrolyte$\mid$Cathode Interphases for Lithium Garnets," Chemistry of Materials 27 [11] 4040-4047 (2015). https://doi.org/10.1021/acs.chemmater.5b01023
  15. Q. Liu, Z. Geng, C. Han, Y. Fu, S. Li, Y. He, F. Kang, and B. Li, "Challenges and Perspectives of Garnet Solid Electrolytes for All Solid-state Lithium Batteries," Journal of Power Sources 389 120-13 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.019
  16. M. Wang, and J. Sakamoto, "Correlating the Interface Resistance and Surface Adhesion of the Li Metal-Solid Electrolyte Interface," Journal of Power Sources 377 7-11 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.078
  17. L. Cheng, E. J. Crumlin, W. Chen, R. Qiao, H. Hou, S. F. Lux, V. Zorba, R. Russo, R. Kostecki, Z. Liu, K. Persson, W. Yang, J. Cabana, T. Richardson, G. Chen and M. Doeff, "The Origin of High Electrolyte-Electrode Interfacial Resistances in Lithium Cells Containing Garnet Type Solid Electrolytes," Physical Chemistry Chemical Physics 16 [34] 18294-18300 (2014). https://doi.org/10.1039/C4CP02921F
  18. X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, and L. Hu, "Negating Interfacial Impedance in Garnet-based Solid-state Li Metal Batteries," Nature materials 16 [5] 572 (2017). https://doi.org/10.1038/nmat4821
  19. W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. Fu, G. Pastel, C. F. Lin, Y. Mo, and E. D. Wachsman, and L. Hu, "Reducing Interfacial Resistance between Garnet Structured Solid State Electrolyte and Li Metal Anode by a Germanium Layer," Advanced Materials 29 [22] 1606042 (2017). https://doi.org/10.1002/adma.201606042
  20. C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E. D. Wachsman, and L. Hu, "Continuous Plating/stripping Behavior of Solid-state Lithium Metal Anode in a 3D Ionconductive Framework," Proceedings of the National Academy of Sciences 115 [15] 3770-3775 (2018). https://doi.org/10.1073/pnas.1719758115
  21. C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K. L. More, N. J. Dudney, and M. Chi. "Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via In Situ Electron Microscopy," Nano letters 16 [11] 7030-7036 (2016). https://doi.org/10.1021/acs.nanolett.6b03223
  22. P. Canepa, J. A. Dawson, G. S. Gautam, J. M. Statham, S. C. Parker, and M. S. Islam. "Particle Morphology and Lithium Segregation to Surfaces of the $Li_7La_3Zr_2O_{12}$ Solid Electrolyte," Chemistry of Materials 30 [9] 3019-3027 (2018). https://doi.org/10.1021/acs.chemmater.8b00649
  23. A. C. Luntz, J. Voss, and K. Reuter. "Interfacial Challenges in Solid-state Li Ion Batteries," Journal of Physical Chemistry Letters 6 [22] 4599-4604 (2015). https://doi.org/10.1021/acs.jpclett.5b02352
  24. A. Aboulaich, R. Bouchet, G. Delaizir, V. Seznec, L. Tortet, M. Morcrette, P. Rozier, J. M. Tarascon, V. Viallet, and M. Dolle. "A New Approach to Develop Safe All Inorganic Monolithic Li Ion Batteries," Advanced Energy Materials 1 [2] 179-183 (2011). https://doi.org/10.1002/aenm.201000050
  25. Y. Zhu, X. He, and Y. Mo, "First Principles Study on Electrochemical and Chemical Stability of Solid Electrolyte-Electrode Interfaces in All-solid-state Li-ion Batteries." Journal of Materials Chemistry A 4 [9] 3253-3266 (2016). https://doi.org/10.1039/C5TA08574H
  26. F. Han, T. Gao, Y. Zhu, K. J. Gaskell, and C. Wang, "A Battery Made from a Single Material." Advanced Materials 27 [23] 3473-3483 (2015). https://doi.org/10.1002/adma.201500180
  27. K. Park, B. C. Yu, J. W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, and J. B. Goodenough. "Electrochemical Nature of the Cathode Interface for a Solid-state Lithium-ion Battery: Interface Between $LiCoO_2\;and\;Garnet-Li_7La_3Zr_2O_{12}$," Chemistry of Materials 28 [21] 8051-8059 (2016). https://doi.org/10.1021/acs.chemmater.6b03870
  28. T. Kato, T. Hamanak, K. Yamamoto ,T. Hirayam, F. Sagane, M. Motoyama, and Y. Iriyama, "In-situ $Li_7La_3Zr_2O_{12}/LiCoO_2$ Interface Modification for Advanced All-solid-state Battery." Journal of Power Sources 260 292-298 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.102
  29. Y. Ren, T. Liu, Y. Shen, Y. Lin, and C. W. Nan, "Chemical Compatibility between Garnet-like Solid State Electrolyte $Li_{6.75}La_3Zr_{1.75}Ta_{0.25}O_{12}$ and Major Commercial Lithium Battery Cathode Materials," Journal of Materiomics 2 [3] 256-264 (2016). https://doi.org/10.1016/j.jmat.2016.04.003
  30. S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, and T. Asaoka, "Co-sinterable Lithium Garnet-type Oxide Electrolyte with Cathode for All-solid-state Lithium Ion Battery," Journal of Power Sources 265 40-44 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.065
  31. F. Han, J. Yue, C. Chen, N. Zhao, X. Fan, Z. Ma, T. Gao, F. Wang, X. Guo, and C. Wang, "Interphase Engineering Enabled All-Ceramic Lithium Battery," Joule 2 [3] 497-508 (2018). https://doi.org/10.1016/j.joule.2018.02.007
  32. Y. Li, Z. Wang, Y. Cao, F. Du, C. Chen, Z. Cui, and X. Guo, "W-doped $Li_7La_3Zr_2O_{12}$ Ceramic Electrolytes for Solid State Li-ion Batteries," Electrochimica Acta 180 37-42 (2015). https://doi.org/10.1016/j.electacta.2015.08.046
  33. M. Samiee, B. Radhakrishnan, Z. Rice, Z. Deng, Y. S. Meng, S. P. Ong, and J. Luo, "Divalent-doped $Na_3Zr_2Si_2PO_{12}$ Natrium Superionic Conductor: Improving the Ionic Conductivity via Simultaneously Optimizing the Phase and Chemistry of the Primary and Secondary Phases," Journal of Power Sources 347 229-237 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.042
  34. J. Kuwano, N. Sato, M. Kato, and K. Takano, "Ionic Conductivity of $LiM_2(PO_4)_3$ (M=Ti, Zr, Hf. and Related Compositions,", Solid State Ionics 70-71 332-336 (1994). https://doi.org/10.1016/0167-2738(94)90332-8
  35. C. Delmas, A. Nadiri, and J. L. Soubeyroux, "The Nasicon-type Titanium Phosphates $ATi_2(PO_4)_3$ (A=Li, Na. as Electrode Materials,", Solid State lonics 28-30 419-423 (1988). https://doi.org/10.1016/S0167-2738(88)80075-4
  36. Y. Zhang, K. Chen, Y. Shen, Y. Lin, and C. W. Nan., "Enhanced Lithium-ion Conductivity in a $LiZr_2(PO_4)_3$ Solid Electrolyte by Al doping,", Ceramics International 43 S598-S602 (2017). https://doi.org/10.1016/j.ceramint.2017.05.198
  37. H. Yamamoto, M. Tabuchi, T. Takeuchi, H. Kageyama, and O. Nakamura, "Ionic Conductivity Enhancement in $LiGe_2(PO_4)_3$ Solid Electrolyte,", Journal of Power Sources 68 [2] 397-401 (1997). https://doi.org/10.1016/S0378-7753(97)02541-X
  38. K. Arbi, J. M. Rojo, and J. Sanz, "Lithium Mobility in Titanium Based Nasicon $Li_{1+x}Ti_{21x}Al_{x}(PO_4)_3\;and\;LiTi_{21x}Zr_{x}(PO_4)_3$ Materials Followed by NMR and Impedance Spectroscopy," Journal of the European Ceramic Society 27 [13] 4215-4218 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.118
  39. H. Xu. S. Wang, H. Wilson, F. Zhao., and A. Manthiram, "Y-Doped NASICON-type $LiZr_2(PO_4)_3$ Solid Electrolytes for Lithium-Metal Batteries," Chemistry of Materials 29 [17] 7206-7212 (2017). https://doi.org/10.1021/acs.chemmater.7b01463
  40. V. Ramar, S. Kumar, S. R. Sivakkumar, and P. Balaya, "NASICON-type $La^{3+}\;Substituted\;LiZr_2(PO_4)_3$ with Improved Ionic Conductivity as Solid Electrolyte," Electrochimica Acta 271 120-126 (2018). https://doi.org/10.1016/j.electacta.2018.03.115
  41. Y. Saito, K. Ado, T. Asai, H. Kageyama, and O. Nakamura, "Grain-boundary Ionic Conductivity in Nominal $Li_{1+x}M_{x}Ti_{2-x}(PO_4)_3\;(M\;=\;Sc^{3+}\;or\;Y^{3+}$. and Their Zirconium Analogues," Journal of Materials Science Letters 11 [12] 888-890 (1992). https://doi.org/10.1007/BF00730497
  42. S. Kumar and P. Balaya, "Improved Ionic Conductivity in NASICON-type $Sr^{2+}\;Doped\;LiZr_2(PO_4)_3$," Solid State Ionics 296, 1-6 (2016). https://doi.org/10.1016/j.ssi.2016.08.012
  43. Y. Noda, K. Nakano, M. Otake, R. Kobayashi, M. Kotobuki, L. Lu, and M. Nakayama, "Research Update: Ca Doping Effect on the Li-ion Conductivity in NASICON-type Solid Electrolyte $LiZr_2(PO_4)_3$: A First-principles Molecular Dynamics Study," APL Materials 6 [6] 060702 (2018). https://doi.org/10.1063/1.5033460
  44. D. H. Kothari, and D. K. Kanchan, "Effect of Doping of Trivalent Cations $Ga^{3+},\;Sc^{3+},\;Y^{3+}\;in\;Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ (LATP. System on $Li^+$ Ion Conductivity," Physica B: Condensed Matter, 501, 90-94 (2016). https://doi.org/10.1016/j.physb.2016.08.020
  45. H. Chung, and B. Kang, "Increase in Grain Boundary Ionic Conductivity of $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3$ by Adding Excess Lithium," Solid State Ionics 263, 125-130 (2014). https://doi.org/10.1016/j.ssi.2014.05.016
  46. H. Chung, and B. Kang, "Mechanical and Thermal Failure Induced by Contact between a $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3$ Solid Electrolyte and Li Metal in an All Solid-State Li Cell," Chemistry of Materials 29 [20] 8611-8619 (2017). https://doi.org/10.1021/acs.chemmater.7b02301
  47. B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang, J. Yang, and J. Xiao, "The Role of the Solid Electrolyte Interphase Layer in Preventing Li Dendrite Growth in solid-state Batteries," Energy & Environmental Science 11 [7] 1803-1810 (2018). https://doi.org/10.1039/C8EE00540K
  48. Y. Liu, C. Li, B. Li, H. Song, Z. Cheng, M. Chen, P. He, and H. Zhou, "Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries," Advanced Energy Materials 8 [16] 1702374 (2018). https://doi.org/10.1002/aenm.201702374
  49. Y. Liu, Q. Sun, Y. Zhao, B. Wang, P. Kaghazchi, K. R. Adair, R. Li, C. Zhang, J. Liu, L. Y. Kuo, Y. Hu, T. K. Sham, L. Zhang, R. Yang, S. Lu, X. Song, and X. Sun, "Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition," ACS Applied Materials & Interfaces 10 [37] 31240-31248 (2018). https://doi.org/10.1021/acsami.8b06366
  50. H. E. Shinawi, A. Regoutz, D. J. Payne, E. J. Cussen, and S. A. Corr, "NASICON $LiM_2(PO_4)_3$ Electrolyte (M=Zr. and Electrode (M=Ti. Materials for All solidstate Li-ion batteries with High Total Conductivity and Low Interfacial Resistance," Journal of Materials Chemistry A 6 [13] 5296-5303 (2018). https://doi.org/10.1039/C7TA08715B
  51. Y. Meesala, C. Y. Chen, A. Jena, Y. K. Liao, S. F. Hu, H. Chang, and R. S. Liu, "All-Solid-State Li-Ion Battery Using $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_{4})_{3}$ As Electrolyte Without Polymer Interfacial Adhesion," The Journal of Physical Chemistry C 122 [26] 14383-14389 (2018). https://doi.org/10.1021/acs.jpcc.8b03971
  52. W. Zhou, S. Wang, Y. Li, S. Xin, A. manthiram, and J. B. Goodenough, "Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte," Journal of the American Chemical Society 138 [30] 9385-9388 (2016). https://doi.org/10.1021/jacs.6b05341
  53. Y. Deng, C. Eames, J. N. Chotard, F. Lalere, V. Seznec, S. Emge, O. Pecher, C. P. Grey, C. Masquelier, and M. S. Islam, "Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in $Li_4SiO_4-Li_3PO_4$ Solid Electrolytes," Journal of the American Chemical Society 137 [28] 9136-9145 (2015). https://doi.org/10.1021/jacs.5b04444
  54. A. Khorassani, G. Izquierdo and A. R. west, "The Solid Electrolyte System, $Li_3PO_4-Li_4SiO_4$," Materials Research Bulletin 16 [12] 1561-1567 (1981). https://doi.org/10.1016/0025-5408(81)90029-5
  55. D. Wang, G. Zhong, Y. Li, Z. Gong, M. J. McDonald, J. X. Mi, R. Fu, Z. Shi, and Y. Yang, "Enhanced Ionic Conductivity of $Li_{3.5}Si_{0.5}P_{0.5}O_4$ with Addition of Lithium Borate," Solid State Ionics 283 109-114 (2015). https://doi.org/10.1016/j.ssi.2015.10.009
  56. Y. Deng, C. Eames, B. Fleutot, R. David, J. N. Chotard, E. Suard, C. Masquelier, and M. S. Islam, "Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON. Solid Electrolytes through a Mixed Polyanion Effect," ACS Applied Materials & Interfaces 9 [8] 7050-7058 (2017). https://doi.org/10.1021/acsami.6b14402
  57. S . Song, J. Lu, F. Zheng, H. M. Duong and L. Lu " A Facile Strategy to Achieve High Conduction and Excellent Chemical Stability of Lithium Solid Electrolytes," RSC Advances 5 [9] 6588-6594 (2015). https://doi.org/10.1039/C4RA11287C
  58. S. Song, Z. Dong, F. Deng and N. Hu, "Lithium superionic conductors $Li_{10}MP_2O_{12}$ (M=Ge, Si)," Functional Materials Letters 11 [2] 1850039 (2018). https://doi.org/10.1142/S179360471850039X
  59. J. F. Whitacre and W.C. West, "Crystalline $Li_3PO_4/Li_4SiO_4$ Solid Solutions as an Electrolyte for Film Batteries Using Sputtered Cathode Layers," Solid State Ionics 175 [1-4] 251-255 (2004). https://doi.org/10.1016/j.ssi.2003.11.034
  60. L. Wang, Q. Wang, W. Jia, S. Chen, P. Gao, and J. Li, "Li Metal Coated with Amorphous $Li_3PO_4$ via Magnetron Sputtering for Stable and Long-cycle Life Lithium Metal Batteries," Journal of Power Sources 342 175-182 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.097
  61. M. Yashima, M. Itoh, Y. Inaguma and Y..Morii, "Crystal Structure and Diffusion Path in the Fast Lithium-ion Conductor $La_{0.62}Li_{0.16}TiO_3$," Journal of the American Chemical Society 127 [10] 3491-3495 (2005). https://doi.org/10.1021/ja0449224
  62. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, "High Ionic Conductivity in Lithium Lanthanum Titanate," Solid State Communication 86 [10] 689-693 (1993). https://doi.org/10.1016/0038-1098(93)90841-A
  63. C. W. Ban, and G. M. Choi "The Effect of Sintering on the Grain Boundary Conductivity of Lithium Lanthanum Titanates," Solid State Ionics 140 [3-4] 285-292 (2001). https://doi.org/10.1016/S0167-2738(01)00821-9
  64. G. X. Wang, P. Yao, D. H. Bradhurst, S. X. Dou, and H. K. Liu, "Structure Characteristics and Lithium Ionic Conductivity of $La_{(0.57-2x/3)}Sr_xLi_{0.3}TiO_3$ Perovskites," Journal of Material Science 35 [17] 4289-4291 (2000). https://doi.org/10.1023/A:1004876100938
  65. V. Thangadurai, A. K. Shukla, and J. Gopalakrishnan, "$LiSr_{1.650.35}B_{1.3}B'_{1.7}O_9$ (B = Ti, Zr; B' = Nb, Ta): New Lithium Ion Conductors Based on the Perovskite Structure," Chemistry of Materials 11 [3] 835-839 (1999). https://doi.org/10.1021/cm9810382
  66. K. Chen, M. Huang, Y. Shen, Y. Lin, and C. W. Nan, "Improving Ionic Conductivity of $Li_{0.35}La_{0.55}TiO_3$ Ceramics by Introducing $Li_7La_3Zr_2O_{12}$ Sol into the Precursor Powder," Solid State Ionics 235 8-13 (2013). https://doi.org/10.1016/j.ssi.2013.01.007
  67. W. J. Kwon, H. Kim, K. N. Jung, W. Cho, S. H. Kim, J. W. Lee, and M. S. Park. "Enhanced $Li^+$ Conduction in Perovskite $Li_{3x}La_{2/3-x\;1/3-2x}TiO_3$ Solid-electrolytes via Microstructural Engineering," Journal of Materials Chemistry A 5 [13] 6257-6262. (2017). https://doi.org/10.1039/C7TA00196G
  68. C. Hua, X. Fang, Z. Wang, and L. Chen, "Lithium Storage in Perovskite Lithium Lanthanum Titanate," Electrochemistry Communications 32 5-8 (2013). https://doi.org/10.1016/j.elecom.2013.03.038
  69. J. Yan, X. Liu, B. Li, J. Yu and B. Ding, "Mixed Ionic and Electronic Conductor for Li-Metal Anode Protection," Advanced Materials 30 [31] 1705105 (2018). https://doi.org/10.1002/adma.201705105
  70. Y. Inaguma and M. Nakashima, "A Rechargeable Lithium-Air Battery Using a Lithium Ion-Conducting Lanthanum Lithium Titanate Ceramics as an Electrolyte Separator," Journal of Power Sources 228 250-255 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.098

Cited by

  1. The study on the interface characteristics of solid-state electrolyte vol.58, pp.3, 2018, https://doi.org/10.1007/s43207-021-00110-y