Browse > Article
http://dx.doi.org/10.31613/ceramist.2018.21.4.04

Research progress of oxide solid electrolytes for next-generation Li-ion batteries  

Kang, Byoungwoo (Pohang University of Science and Technology)
Park, Heetaek (Pohang University of Science and Technology)
Woo, Seungjun (Pohang University of Science and Technology)
Kang, Minseok (Pohang University of Science and Technology)
Kim, Abin (Pohang University of Science and Technology)
Publication Information
Ceramist / v.21, no.4, 2018 , pp. 349-365 More about this Journal
Abstract
Since the electrification of vehicles has been extended, solid-state batteries have been attracting a lot of interest because of their superior safety. Especially, polymer, sulfide, and oxide based materials are being studied as solid electrolytes, and each type of materials has advantaged and disadvantages over others. Oxide electrolytes has higher chemical and electrochemical stability compared to the other types of electrolytes. However, ionic conductivity isn't high enough as much as that of organic liquid electrolytes. Also, there are many difficulties of fabricating solid-state batteries with oxide based electrolytes because they require a sintering process at very high temperature (above ${\sim}800^{\circ}C$). Herein, we review recent studies of solid-state batteries with oxide based electrolytes about the ionic conductivity, interfacial reactions with Li metal, and preparation of solid-state cell.
Keywords
Oxide solid electrolytes; Ionic conductivity; Li metal interface;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Chung, and B. Kang, "Mechanical and Thermal Failure Induced by Contact between a $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3$ Solid Electrolyte and Li Metal in an All Solid-State Li Cell," Chemistry of Materials 29 [20] 8611-8619 (2017).   DOI
2 B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang, J. Yang, and J. Xiao, "The Role of the Solid Electrolyte Interphase Layer in Preventing Li Dendrite Growth in solid-state Batteries," Energy & Environmental Science 11 [7] 1803-1810 (2018).   DOI
3 Y. Liu, C. Li, B. Li, H. Song, Z. Cheng, M. Chen, P. He, and H. Zhou, "Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries," Advanced Energy Materials 8 [16] 1702374 (2018).   DOI
4 Y. Liu, Q. Sun, Y. Zhao, B. Wang, P. Kaghazchi, K. R. Adair, R. Li, C. Zhang, J. Liu, L. Y. Kuo, Y. Hu, T. K. Sham, L. Zhang, R. Yang, S. Lu, X. Song, and X. Sun, "Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition," ACS Applied Materials & Interfaces 10 [37] 31240-31248 (2018).   DOI
5 H. E. Shinawi, A. Regoutz, D. J. Payne, E. J. Cussen, and S. A. Corr, "NASICON $LiM_2(PO_4)_3$ Electrolyte (M=Zr. and Electrode (M=Ti. Materials for All solidstate Li-ion batteries with High Total Conductivity and Low Interfacial Resistance," Journal of Materials Chemistry A 6 [13] 5296-5303 (2018).   DOI
6 Y. Meesala, C. Y. Chen, A. Jena, Y. K. Liao, S. F. Hu, H. Chang, and R. S. Liu, "All-Solid-State Li-Ion Battery Using $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_{4})_{3}$ As Electrolyte Without Polymer Interfacial Adhesion," The Journal of Physical Chemistry C 122 [26] 14383-14389 (2018).   DOI
7 W. Zhou, S. Wang, Y. Li, S. Xin, A. manthiram, and J. B. Goodenough, "Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte," Journal of the American Chemical Society 138 [30] 9385-9388 (2016).   DOI
8 A. Manthiram, X. Yu, and S. Wang, "Lithium Battery Chemistries Enabled by Solid-State Electrolytes," Nature Reviews Materials, 2 [4], 16103 (2017).   DOI
9 C. Monroe, and J. Newman, "The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces." Journal of The Electrochemical Society 152 [2] A396-A404 (2005).   DOI
10 Toyota, https://www.toyota-europe.com/world-of-toyota/environmental-technology/next-generation-secondary-batteries (2012).
11 N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, "A Lithium Superionic Conductor," Nature materials 10 [9] 682-686 (2011).   DOI
12 R. Murugan, V. Thangadurai, and W. Weppner, "Fast Lithium Ion Conduction in Garnet-Type $Li_7La_3Zr_2O_{12}$," Angewandte Chemie International Edition 46 [41] 7778-7781 (2007).   DOI
13 J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, and J. Akimoto, "Crystal Structure of Fast Lithium-ion-conducting Cubic $Li_7La_3Zr_2O_{12}$," Chemistry letters 40 [1]: 60-62 (2010).   DOI
14 L. Cheng, E. J. Crumlin, W. Chen, R. Qiao, H. Hou, S. F. Lux, V. Zorba, R. Russo, R. Kostecki, Z. Liu, K. Persson, W. Yang, J. Cabana, T. Richardson, G. Chen and M. Doeff, "The Origin of High Electrolyte-Electrode Interfacial Resistances in Lithium Cells Containing Garnet Type Solid Electrolytes," Physical Chemistry Chemical Physics 16 [34] 18294-18300 (2014).   DOI
15 Y. Deng, C. Eames, J. N. Chotard, F. Lalere, V. Seznec, S. Emge, O. Pecher, C. P. Grey, C. Masquelier, and M. S. Islam, "Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in $Li_4SiO_4-Li_3PO_4$ Solid Electrolytes," Journal of the American Chemical Society 137 [28] 9136-9145 (2015).   DOI
16 A. Khorassani, G. Izquierdo and A. R. west, "The Solid Electrolyte System, $Li_3PO_4-Li_4SiO_4$," Materials Research Bulletin 16 [12] 1561-1567 (1981).   DOI
17 J. Wolfenstine, J. L. Allen, J. Read, and J. Sakamoto, "Chemical Stability of Cubic $Li_7La_3Zr_2O_{12}$ with Molten Lithium at Elevated Temperature," Journal of Materials Science 48 [17] 5846-5851 (2013).   DOI
18 A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, and J. Sakamoto, "Surface Chemistry Mechanism of Ultra- Low Interfacial Resistance in the Solid-State Electrolyte $Li_7La_3Zr_2O_{12}$." Chemistry of Materials 29 [18] 7961-7968 (2017).   DOI
19 Q. Liu, Z. Geng, C. Han, Y. Fu, S. Li, Y. He, F. Kang, and B. Li, "Challenges and Perspectives of Garnet Solid Electrolytes for All Solid-state Lithium Batteries," Journal of Power Sources 389 120-13 (2018).   DOI
20 M. Wang, and J. Sakamoto, "Correlating the Interface Resistance and Surface Adhesion of the Li Metal-Solid Electrolyte Interface," Journal of Power Sources 377 7-11 (2018).   DOI
21 X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, and L. Hu, "Negating Interfacial Impedance in Garnet-based Solid-state Li Metal Batteries," Nature materials 16 [5] 572 (2017).   DOI
22 W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. Fu, G. Pastel, C. F. Lin, Y. Mo, and E. D. Wachsman, and L. Hu, "Reducing Interfacial Resistance between Garnet Structured Solid State Electrolyte and Li Metal Anode by a Germanium Layer," Advanced Materials 29 [22] 1606042 (2017).   DOI
23 C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E. D. Wachsman, and L. Hu, "Continuous Plating/stripping Behavior of Solid-state Lithium Metal Anode in a 3D Ionconductive Framework," Proceedings of the National Academy of Sciences 115 [15] 3770-3775 (2018).   DOI
24 S. Song, Z. Dong, F. Deng and N. Hu, "Lithium superionic conductors $Li_{10}MP_2O_{12}$ (M=Ge, Si)," Functional Materials Letters 11 [2] 1850039 (2018).   DOI
25 D. Wang, G. Zhong, Y. Li, Z. Gong, M. J. McDonald, J. X. Mi, R. Fu, Z. Shi, and Y. Yang, "Enhanced Ionic Conductivity of $Li_{3.5}Si_{0.5}P_{0.5}O_4$ with Addition of Lithium Borate," Solid State Ionics 283 109-114 (2015).   DOI
26 Y. Deng, C. Eames, B. Fleutot, R. David, J. N. Chotard, E. Suard, C. Masquelier, and M. S. Islam, "Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON. Solid Electrolytes through a Mixed Polyanion Effect," ACS Applied Materials & Interfaces 9 [8] 7050-7058 (2017).   DOI
27 S . Song, J. Lu, F. Zheng, H. M. Duong and L. Lu " A Facile Strategy to Achieve High Conduction and Excellent Chemical Stability of Lithium Solid Electrolytes," RSC Advances 5 [9] 6588-6594 (2015).   DOI
28 J. F. Whitacre and W.C. West, "Crystalline $Li_3PO_4/Li_4SiO_4$ Solid Solutions as an Electrolyte for Film Batteries Using Sputtered Cathode Layers," Solid State Ionics 175 [1-4] 251-255 (2004).   DOI
29 L. Wang, Q. Wang, W. Jia, S. Chen, P. Gao, and J. Li, "Li Metal Coated with Amorphous $Li_3PO_4$ via Magnetron Sputtering for Stable and Long-cycle Life Lithium Metal Batteries," Journal of Power Sources 342 175-182 (2017).   DOI
30 F. Chen, J. Li, Z. Huang, Y. Yang, Q. Shen, and L. Zhang. "Origin of the Phase Transition in Lithium Garnets," The Journal of Physical Chemistry C 122 [4] 1963-1972 (2018).   DOI
31 N. Bernstein, M. D. Johannes, and K. Hoang, "Origin of the Structural Phase Transition in $Li_7La_3Zr_2O_{12}$," Physical Review Letters 109 [20] 205702 (2012).   DOI
32 T. Thompson, J. Wolfenstine, J. L. Allen, M. Johannes, A. Huq, I. N. David, and J. Sakamoto, "Tetragonal vs. Cubic Phase Stability in Al-free Ta Doped $Li_7La_3Zr_2O_{12}$(LLZO)," Journal of Materials Chemistry A 2 [33] 13431-13436 (2014).   DOI
33 J. L. Allen, J. Wolfenstine, E. Rangasamy, and J. Sakamoto, "Effect of Substitution (Ta, Al, Ga. on the Conductivity of $Li_7La_3Zr_2O_{12}$." Journal of Power Sources 206 315-319 (2012).   DOI
34 L. Buannic, B. Orayech, J. M. L. Del Amo, J. Carrasco, N. A. Katcho, F. Aguesse, W. Manalastas, W. Zhang, J. Kilner, and A. Llordes, "Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in $Li_{7}La_{3}Zr_{2}O_{12}$ Solid Electrolyte," Chemistry of Materials 29 [4] 1769-1778 (2017).   DOI
35 L. J. Miara, W. D. Richards, Y. E. Wang, and G. Ceder, "First-Principles Studies on Cation Dopants and Electrolyte$\mid$Cathode Interphases for Lithium Garnets," Chemistry of Materials 27 [11] 4040-4047 (2015).   DOI
36 A. Aboulaich, R. Bouchet, G. Delaizir, V. Seznec, L. Tortet, M. Morcrette, P. Rozier, J. M. Tarascon, V. Viallet, and M. Dolle. "A New Approach to Develop Safe All Inorganic Monolithic Li Ion Batteries," Advanced Energy Materials 1 [2] 179-183 (2011).   DOI
37 C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K. L. More, N. J. Dudney, and M. Chi. "Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via In Situ Electron Microscopy," Nano letters 16 [11] 7030-7036 (2016).   DOI
38 M. Yashima, M. Itoh, Y. Inaguma and Y..Morii, "Crystal Structure and Diffusion Path in the Fast Lithium-ion Conductor $La_{0.62}Li_{0.16}TiO_3$," Journal of the American Chemical Society 127 [10] 3491-3495 (2005).   DOI
39 P. Canepa, J. A. Dawson, G. S. Gautam, J. M. Statham, S. C. Parker, and M. S. Islam. "Particle Morphology and Lithium Segregation to Surfaces of the $Li_7La_3Zr_2O_{12}$ Solid Electrolyte," Chemistry of Materials 30 [9] 3019-3027 (2018).   DOI
40 A. C. Luntz, J. Voss, and K. Reuter. "Interfacial Challenges in Solid-state Li Ion Batteries," Journal of Physical Chemistry Letters 6 [22] 4599-4604 (2015).   DOI
41 Y. Zhu, X. He, and Y. Mo, "First Principles Study on Electrochemical and Chemical Stability of Solid Electrolyte-Electrode Interfaces in All-solid-state Li-ion Batteries." Journal of Materials Chemistry A 4 [9] 3253-3266 (2016).   DOI
42 F. Han, T. Gao, Y. Zhu, K. J. Gaskell, and C. Wang, "A Battery Made from a Single Material." Advanced Materials 27 [23] 3473-3483 (2015).   DOI
43 K. Park, B. C. Yu, J. W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, and J. B. Goodenough. "Electrochemical Nature of the Cathode Interface for a Solid-state Lithium-ion Battery: Interface Between $LiCoO_2\;and\;Garnet-Li_7La_3Zr_2O_{12}$," Chemistry of Materials 28 [21] 8051-8059 (2016).   DOI
44 V. Thangadurai, A. K. Shukla, and J. Gopalakrishnan, "$LiSr_{1.650.35}B_{1.3}B (B = Ti, Zr; B' = Nb, Ta): New Lithium Ion Conductors Based on the Perovskite Structure," Chemistry of Materials 11 [3] 835-839 (1999).   DOI
45 Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, "High Ionic Conductivity in Lithium Lanthanum Titanate," Solid State Communication 86 [10] 689-693 (1993).   DOI
46 C. W. Ban, and G. M. Choi "The Effect of Sintering on the Grain Boundary Conductivity of Lithium Lanthanum Titanates," Solid State Ionics 140 [3-4] 285-292 (2001).   DOI
47 G. X. Wang, P. Yao, D. H. Bradhurst, S. X. Dou, and H. K. Liu, "Structure Characteristics and Lithium Ionic Conductivity of $La_{(0.57-2x/3)}Sr_xLi_{0.3}TiO_3$ Perovskites," Journal of Material Science 35 [17] 4289-4291 (2000).   DOI
48 K. Chen, M. Huang, Y. Shen, Y. Lin, and C. W. Nan, "Improving Ionic Conductivity of $Li_{0.35}La_{0.55}TiO_3$ Ceramics by Introducing $Li_7La_3Zr_2O_{12}$ Sol into the Precursor Powder," Solid State Ionics 235 8-13 (2013).   DOI
49 W. J. Kwon, H. Kim, K. N. Jung, W. Cho, S. H. Kim, J. W. Lee, and M. S. Park. "Enhanced $Li^+$ Conduction in Perovskite $Li_{3x}La_{2/3-x\;1/3-2x}TiO_3$ Solid-electrolytes via Microstructural Engineering," Journal of Materials Chemistry A 5 [13] 6257-6262. (2017).   DOI
50 C. Hua, X. Fang, Z. Wang, and L. Chen, "Lithium Storage in Perovskite Lithium Lanthanum Titanate," Electrochemistry Communications 32 5-8 (2013).   DOI
51 M. Samiee, B. Radhakrishnan, Z. Rice, Z. Deng, Y. S. Meng, S. P. Ong, and J. Luo, "Divalent-doped $Na_3Zr_2Si_2PO_{12}$ Natrium Superionic Conductor: Improving the Ionic Conductivity via Simultaneously Optimizing the Phase and Chemistry of the Primary and Secondary Phases," Journal of Power Sources 347 229-237 (2017).   DOI
52 T. Kato, T. Hamanak, K. Yamamoto ,T. Hirayam, F. Sagane, M. Motoyama, and Y. Iriyama, "In-situ $Li_7La_3Zr_2O_{12}/LiCoO_2$ Interface Modification for Advanced All-solid-state Battery." Journal of Power Sources 260 292-298 (2014).   DOI
53 Y. Ren, T. Liu, Y. Shen, Y. Lin, and C. W. Nan, "Chemical Compatibility between Garnet-like Solid State Electrolyte $Li_{6.75}La_3Zr_{1.75}Ta_{0.25}O_{12}$ and Major Commercial Lithium Battery Cathode Materials," Journal of Materiomics 2 [3] 256-264 (2016).   DOI
54 S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, and T. Asaoka, "Co-sinterable Lithium Garnet-type Oxide Electrolyte with Cathode for All-solid-state Lithium Ion Battery," Journal of Power Sources 265 40-44 (2014).   DOI
55 F. Han, J. Yue, C. Chen, N. Zhao, X. Fan, Z. Ma, T. Gao, F. Wang, X. Guo, and C. Wang, "Interphase Engineering Enabled All-Ceramic Lithium Battery," Joule 2 [3] 497-508 (2018).   DOI
56 Y. Li, Z. Wang, Y. Cao, F. Du, C. Chen, Z. Cui, and X. Guo, "W-doped $Li_7La_3Zr_2O_{12}$ Ceramic Electrolytes for Solid State Li-ion Batteries," Electrochimica Acta 180 37-42 (2015).   DOI
57 J. Kuwano, N. Sato, M. Kato, and K. Takano, "Ionic Conductivity of $LiM_2(PO_4)_3$ (M=Ti, Zr, Hf. and Related Compositions,", Solid State Ionics 70-71 332-336 (1994).   DOI
58 C. Delmas, A. Nadiri, and J. L. Soubeyroux, "The Nasicon-type Titanium Phosphates $ATi_2(PO_4)_3$ (A=Li, Na. as Electrode Materials,", Solid State lonics 28-30 419-423 (1988).   DOI
59 J. Yan, X. Liu, B. Li, J. Yu and B. Ding, "Mixed Ionic and Electronic Conductor for Li-Metal Anode Protection," Advanced Materials 30 [31] 1705105 (2018).   DOI
60 Y. Inaguma and M. Nakashima, "A Rechargeable Lithium-Air Battery Using a Lithium Ion-Conducting Lanthanum Lithium Titanate Ceramics as an Electrolyte Separator," Journal of Power Sources 228 250-255 (2013).   DOI
61 Y. Zhang, K. Chen, Y. Shen, Y. Lin, and C. W. Nan., "Enhanced Lithium-ion Conductivity in a $LiZr_2(PO_4)_3$ Solid Electrolyte by Al doping,", Ceramics International 43 S598-S602 (2017).   DOI
62 H. Yamamoto, M. Tabuchi, T. Takeuchi, H. Kageyama, and O. Nakamura, "Ionic Conductivity Enhancement in $LiGe_2(PO_4)_3$ Solid Electrolyte,", Journal of Power Sources 68 [2] 397-401 (1997).   DOI
63 Y. Saito, K. Ado, T. Asai, H. Kageyama, and O. Nakamura, "Grain-boundary Ionic Conductivity in Nominal $Li_{1+x}M_{x}Ti_{2-x}(PO_4)_3\;(M\;=\;Sc^{3+}\;or\;Y^{3+}$. and Their Zirconium Analogues," Journal of Materials Science Letters 11 [12] 888-890 (1992).   DOI
64 K. Arbi, J. M. Rojo, and J. Sanz, "Lithium Mobility in Titanium Based Nasicon $Li_{1+x}Ti_{21x}Al_{x}(PO_4)_3\;and\;LiTi_{21x}Zr_{x}(PO_4)_3$ Materials Followed by NMR and Impedance Spectroscopy," Journal of the European Ceramic Society 27 [13] 4215-4218 (2007).   DOI
65 H. Xu. S. Wang, H. Wilson, F. Zhao., and A. Manthiram, "Y-Doped NASICON-type $LiZr_2(PO_4)_3$ Solid Electrolytes for Lithium-Metal Batteries," Chemistry of Materials 29 [17] 7206-7212 (2017).   DOI
66 V. Ramar, S. Kumar, S. R. Sivakkumar, and P. Balaya, "NASICON-type $La^{3+}\;Substituted\;LiZr_2(PO_4)_3$ with Improved Ionic Conductivity as Solid Electrolyte," Electrochimica Acta 271 120-126 (2018).   DOI
67 H. Chung, and B. Kang, "Increase in Grain Boundary Ionic Conductivity of $Li_{1.5}Al_{0.5}Ge_{1.5}(PO_4)_3$ by Adding Excess Lithium," Solid State Ionics 263, 125-130 (2014).   DOI
68 S. Kumar and P. Balaya, "Improved Ionic Conductivity in NASICON-type $Sr^{2+}\;Doped\;LiZr_2(PO_4)_3$," Solid State Ionics 296, 1-6 (2016).   DOI
69 Y. Noda, K. Nakano, M. Otake, R. Kobayashi, M. Kotobuki, L. Lu, and M. Nakayama, "Research Update: Ca Doping Effect on the Li-ion Conductivity in NASICON-type Solid Electrolyte $LiZr_2(PO_4)_3$: A First-principles Molecular Dynamics Study," APL Materials 6 [6] 060702 (2018).   DOI
70 D. H. Kothari, and D. K. Kanchan, "Effect of Doping of Trivalent Cations $Ga^{3+},\;Sc^{3+},\;Y^{3+}\;in\;Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ (LATP. System on $Li^+$ Ion Conductivity," Physica B: Condensed Matter, 501, 90-94 (2016).   DOI