DOI QR코드

DOI QR Code

Optical Properties of Plasmons in a GaAs/AlxGa1-xAs Multiple Quantum Well Under Electric and Magnetic Fields

전기장과 자기장하의 GaAs/AlxGa1-xAs 다중 양자 우물 내 플라즈몬의 광학적 속성

  • 안형수 (한국해양대학교 전자소재공학과) ;
  • 이상칠 (제주대학교 사범대학 과학교육과) ;
  • 김석환 (안동대학교 물리학과)
  • Received : 2018.09.11
  • Accepted : 2018.10.01
  • Published : 2018.11.30

Abstract

The plasmon behaviors in a superlattice of $GaAs/Al_xGa_{1-x}As$ multiple quantum wells with a half-parabolic confining potential due to different dielectric interfaces are studied under magnetic and electric fields perpendicular and parallel to the superlattice axis by using a previously published theoretical framework. From the density-density correlation functions by considering the intrasubband and the inter-subband transitions under the random phase approximation, we calculate the dispersion energies of the surface and the bulk states as functions of the composition of the multiple quantum well structure and of the magnetic field strength and the average electric field strength over the quantum well. The Raman intensities for various magnetic field strengths and average electric field strengths over the quantum well are also obtained as a function of the energy of the incoming light for these states.

$GaAs/Al_xGa_{1-x}As$ 다중 양자 우물들에 의한 초격자내 플라즈몬들이 다른 유전 계면과 반포물선 구속 퍼텐셜에 의한 거동을 초격자 축에 수직한 자기장과 평행한 전기장하에서 이전의 이론적 토대하에서 연구하였다. 막 위상 근사 방법을 사용하여 부 밴드 내와 부 밴드 사이의 전이가 고려된 밀도-밀도 상관함수로부터 표면과 벌크 상태의 분산 에너지를 전체 양자 우물의 평균 전기장, 자기장의 세기 및 조성비의 함수로 얻었다. 또한 여러 가지 평균 전기장, 자기장의 세기에 대한 라만 세기를 그들 상태에 대해 입사광의 에너지 함수로 얻었다.

Keywords

Acknowledgement

Supported by : 안동대학교

References

  1. A. C. Tselis and J. J. Quinn, Phys. Rev. B 29, 3318 (1984). https://doi.org/10.1103/PhysRevB.29.3318
  2. R. Dingle, H. L. Stormer, A. C. Gossard and W. Wiegmann, Surf. Sci. 98, 90 (1980). https://doi.org/10.1016/0039-6028(80)90478-1
  3. L. L. Chang and L. Esaki, Surf. Sci. 98, 70 (1980). https://doi.org/10.1016/0039-6028(80)90477-X
  4. G. A. Sai-Harasz, L. L. Chang, J. M. Welter, C. A. Chang and L. Esaki, Solid State Commun. 27, 935 (1978). https://doi.org/10.1016/0038-1098(78)91010-4
  5. G. F. Giuliani and J. J. Quinn, Phys. Rev. Lett. 51, 919 (1983). https://doi.org/10.1103/PhysRevLett.51.919
  6. A. Tselis, G. Gonzalez de la Cruz and J. J. Quinn, Solid State Commun. 46, 779 (1983). https://doi.org/10.1016/0038-1098(83)90225-9
  7. G. Gonzalez de la Cruz, A. Tselis and J. J. Quinn, J. Chem. Phys. Solids 44, 807 (1983). https://doi.org/10.1016/0022-3697(83)90014-8
  8. A. Caille, M. Banville, P. D. Loly and M. J. Zuckerman, Solid State Commun. 41, 119 (1982). https://doi.org/10.1016/0038-1098(82)90263-0
  9. P. Hawrylak, J. W. Wu and J. J. Quinn, Phys. Rev. B 31, 7855 (1985). https://doi.org/10.1103/PhysRevB.31.7855
  10. G. F. Giuliani and J. J. Quinn, Phys. Rev. Lett. 51, 919 (1983). https://doi.org/10.1103/PhysRevLett.51.919
  11. G. Qin, G. F. Giuliani, J. J. Quinn, Phys. Rev. B 28, 6144 (1983). https://doi.org/10.1103/PhysRevB.28.6144
  12. J. K. Jain and P. B. Allen, Phys. Rev. Lett. 54, 947 (1985). https://doi.org/10.1103/PhysRevLett.54.947
  13. D. Olega, A. Pinczuk, A.C. Gossard and W. Wiegmann, Phys. Rev. B 25, 7867 (1982). https://doi.org/10.1103/PhysRevB.25.7867
  14. P. Hawrylak, J. W. Wu and J. J. Quinn, Phys. Rev. B 32, 4272 (1985). https://doi.org/10.1103/PhysRevB.32.4272
  15. A. Pinczuk, M. G. Lamont and A. C. Gossard, Phys. Rev. Lett. 56, 2092 (1986). https://doi.org/10.1103/PhysRevLett.56.2092
  16. J. W. Wu, P. Hawrylak and J. J. Quinn, Phys. Rev. Lett. 55, 879 (1985). https://doi.org/10.1103/PhysRevLett.55.879
  17. J. K. Jain and P. B. Allen, Phys. Rev. Lett. 54, 2437 (1985). https://doi.org/10.1103/PhysRevLett.54.2437
  18. S. C. Lee, J. W. Kang, D. S. Kang, Y. B. Kang and K. H. Kim et al., Physica B 387, 313 (2007. https://doi.org/10.1016/j.physb.2006.04.019
  19. S. Das Sarma and J. J. Quinn, Phys. Rev. B 25, 7603 (1982). https://doi.org/10.1103/PhysRevB.25.7603
  20. H. K. Lee, E. Y. Kim, K. S. Sohn, J. Y. Ryu and S. W. Kim, Phys. Rev. B 63, 045307 (2001). https://doi.org/10.1103/PhysRevB.63.045307
  21. S. W. Kim and S. C. Lee, J. Korean Phys. Soc. 45, 438 (2004).
  22. P. Hawrylak, G. Eliasson and J. J. Quinn, Phys. Rev. B 34, 5368 (1986). https://doi.org/10.1103/PhysRevB.34.5368
  23. S. C. Lee, H. S. Ahn, S. H. Kwon and S. W. Kim, Physica B 407, 3487 (2012). https://doi.org/10.1016/j.physb.2012.05.007
  24. H. S. Ahn, S. C. Lee and S. W. Kim, Physica B 451, 7 (2014). https://doi.org/10.1016/j.physb.2014.05.067
  25. W. L. Mochan, M. del Castillo-Mussot and R. G. Barrera, Phys. Rev. B 35, 1088 (1987). https://doi.org/10.1103/PhysRevB.35.1088
  26. M. del Castillo-Mussot and W. L. Mochan, Phys. Rev. B 37, 6763 (1988). https://doi.org/10.1103/PhysRevB.37.6763
  27. G. H. Cocoletzi, W. L. Mochan, Phys. Rev. B 39, 8403 (1989). https://doi.org/10.1103/PhysRevB.39.8403
  28. S. C. Lee, Y. H. Yu, D. S. Kang, H. S. Ahn and S. W. Kim, J. Korean Phys. Soc. 42, 386 (2003).
  29. G. Eliasson, P. Hawrylak and J. J. Quinn, Phys. Rev. B 35, 5569 (1987). https://doi.org/10.1103/PhysRevB.35.5569
  30. H.C. Casey Jr. and M.B. Panish, Heterostructure Lasers, Part A: Fundamental Principles; Part B: Materials and Operating Characteristics (Academic Press, New York, 1978).
  31. D. K. Ferry and S. M. Goodnick, Transport in Nanostructures (Cambridge University Press, New York, 1997), p. 60.
  32. H. Ibach and H. Luth, Solid State Physics: An Introduction to Principles of Materials Science (Springer, New York, 2009), p. 151.