Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1183

Optical Properties of Plasmons in a GaAs/AlxGa1-xAs Multiple Quantum Well Under Electric and Magnetic Fields  

Ahn, Hyung Soo (Department of Applied Physics, Korea Maritime University)
Lee, Sang Chil (Faculty of Science Education, Jeju National University)
Kim, Suck Whan (Department of Physics, Andong National University)
Abstract
The plasmon behaviors in a superlattice of $GaAs/Al_xGa_{1-x}As$ multiple quantum wells with a half-parabolic confining potential due to different dielectric interfaces are studied under magnetic and electric fields perpendicular and parallel to the superlattice axis by using a previously published theoretical framework. From the density-density correlation functions by considering the intrasubband and the inter-subband transitions under the random phase approximation, we calculate the dispersion energies of the surface and the bulk states as functions of the composition of the multiple quantum well structure and of the magnetic field strength and the average electric field strength over the quantum well. The Raman intensities for various magnetic field strengths and average electric field strengths over the quantum well are also obtained as a function of the energy of the incoming light for these states.
Keywords
$GaAs/Al_xGa_{1-x}As$; Superlattice; Raman intensity; Plasmon; Dispersion relation; Random phase approximation; Density-density correlation function;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. C. Tselis and J. J. Quinn, Phys. Rev. B 29, 3318 (1984).   DOI
2 R. Dingle, H. L. Stormer, A. C. Gossard and W. Wiegmann, Surf. Sci. 98, 90 (1980).   DOI
3 L. L. Chang and L. Esaki, Surf. Sci. 98, 70 (1980).   DOI
4 G. A. Sai-Harasz, L. L. Chang, J. M. Welter, C. A. Chang and L. Esaki, Solid State Commun. 27, 935 (1978).   DOI
5 G. F. Giuliani and J. J. Quinn, Phys. Rev. Lett. 51, 919 (1983).   DOI
6 G. Gonzalez de la Cruz, A. Tselis and J. J. Quinn, J. Chem. Phys. Solids 44, 807 (1983).   DOI
7 A. Caille, M. Banville, P. D. Loly and M. J. Zuckerman, Solid State Commun. 41, 119 (1982).   DOI
8 P. Hawrylak, J. W. Wu and J. J. Quinn, Phys. Rev. B 31, 7855 (1985).   DOI
9 G. F. Giuliani and J. J. Quinn, Phys. Rev. Lett. 51, 919 (1983).   DOI
10 G. Qin, G. F. Giuliani, J. J. Quinn, Phys. Rev. B 28, 6144 (1983).   DOI
11 J. K. Jain and P. B. Allen, Phys. Rev. Lett. 54, 947 (1985).   DOI
12 D. Olega, A. Pinczuk, A.C. Gossard and W. Wiegmann, Phys. Rev. B 25, 7867 (1982).   DOI
13 P. Hawrylak, J. W. Wu and J. J. Quinn, Phys. Rev. B 32, 4272 (1985).   DOI
14 A. Pinczuk, M. G. Lamont and A. C. Gossard, Phys. Rev. Lett. 56, 2092 (1986).   DOI
15 J. W. Wu, P. Hawrylak and J. J. Quinn, Phys. Rev. Lett. 55, 879 (1985).   DOI
16 A. Tselis, G. Gonzalez de la Cruz and J. J. Quinn, Solid State Commun. 46, 779 (1983).   DOI
17 J. K. Jain and P. B. Allen, Phys. Rev. Lett. 54, 2437 (1985).   DOI
18 S. C. Lee, J. W. Kang, D. S. Kang, Y. B. Kang and K. H. Kim et al., Physica B 387, 313 (2007.   DOI
19 S. Das Sarma and J. J. Quinn, Phys. Rev. B 25, 7603 (1982).   DOI
20 H. K. Lee, E. Y. Kim, K. S. Sohn, J. Y. Ryu and S. W. Kim, Phys. Rev. B 63, 045307 (2001).   DOI
21 S. W. Kim and S. C. Lee, J. Korean Phys. Soc. 45, 438 (2004).
22 S. C. Lee, H. S. Ahn, S. H. Kwon and S. W. Kim, Physica B 407, 3487 (2012).   DOI
23 H. S. Ahn, S. C. Lee and S. W. Kim, Physica B 451, 7 (2014).   DOI
24 W. L. Mochan, M. del Castillo-Mussot and R. G. Barrera, Phys. Rev. B 35, 1088 (1987).   DOI
25 M. del Castillo-Mussot and W. L. Mochan, Phys. Rev. B 37, 6763 (1988).   DOI
26 G. H. Cocoletzi, W. L. Mochan, Phys. Rev. B 39, 8403 (1989).   DOI
27 S. C. Lee, Y. H. Yu, D. S. Kang, H. S. Ahn and S. W. Kim, J. Korean Phys. Soc. 42, 386 (2003).
28 G. Eliasson, P. Hawrylak and J. J. Quinn, Phys. Rev. B 35, 5569 (1987).   DOI
29 H.C. Casey Jr. and M.B. Panish, Heterostructure Lasers, Part A: Fundamental Principles; Part B: Materials and Operating Characteristics (Academic Press, New York, 1978).
30 P. Hawrylak, G. Eliasson and J. J. Quinn, Phys. Rev. B 34, 5368 (1986).   DOI
31 D. K. Ferry and S. M. Goodnick, Transport in Nanostructures (Cambridge University Press, New York, 1997), p. 60.
32 H. Ibach and H. Luth, Solid State Physics: An Introduction to Principles of Materials Science (Springer, New York, 2009), p. 151.