DOI QR코드

DOI QR Code

Measurement of Thermal Diffusivity and the Optical Properties of a Carbon Nanotube Dispersion by Using the Thermal Lens Effect

열렌즈 효과를 이용한 탄소 나노 튜브 분산액의 열확산도와 광학적 특성 측정

  • Park, Hyunwoo (Department of Physics, University of Ulsan) ;
  • Kim, Hyunki (Department of Physics, University of Ulsan) ;
  • Kim, Sok Won (Department of Physics, University of Ulsan) ;
  • Lee, Joohyun (Korea Research Institute of Standards and Science)
  • Received : 2018.09.16
  • Accepted : 2018.10.17
  • Published : 2018.11.30

Abstract

Carbon nanotubes (CNTs) are structures of carbon atoms bonded together in hexagonal honeycomb shapes, with multi-walled CNTs having a very high thermal conductivity of $3000W/m{\cdot}K$ and single-walled CNTs having a conductivity of $6000W/m{\cdot}K$. In this work, the transmittance and the thermal diffusivity of a multi-walled carbon nanotube dispersion with a concentration of 1.5 M were measured using a single beam method, a dual beam method, and the thermal lens effect. The nonlinear optical coefficients were obtained by using the z-scan method, which moved the sample in the direction of propagation of the single laser beam, propagation and the thermal diffusivity was measured using a double laser beam. As a pump beam, a diode-pumped solid state (DPSS) laser with a wavelength of 532 nm and an intensity of 100 mW was used. As the probe beam, a He-Ne laser having a wavelength of 633 nm and an intensity of 5 mW was used. The experimental result shows that when the concentrations of the sample were 9.99, 11.10, 16.65, and 19.98 mM, the nonlinear absorption coefficients were 0.046, 0.051, 0.136 and 0.169 m/W, respectively. Also, the nonlinear refractive indices were 0.20, 0.51, 1.25 and $1.32{\times}10^{-11}m^2/W$, respectively, and the average thermal diffusivity was $1.33{\times}10^{-6}m^2/s$.

탄소 나노 튜브는 탄소 원자들이 육각형의 벌집모양으로 서로 연결된 고분자 탄소동소체로 다중벽일 경우 $3000W{\cdot}m^{-1}{\cdot}K^{-1}$, 단일벽일 경우 $6000W{\cdot}m^{-1}{\cdot}K^{-1}$ 정도로 매우 높은 열전도도를 보인다. 본 연구에서는 단일 빔과 이중 빔 방법으로 열렌즈 효과를 이용하여, 1.5 M 다중벽 탄소 나노튜브 분산액의 투과율과 열확산도를 측정하였다. 단일 레이저 빔의 진행방향으로 시료를 움직이는 z-scan 방법을 통해 비선형 광학계수들을 구하고, 이중 레이저 빔을 이용하여 열확산도를 측정하였다. 펌프 빔으로는 파장 532 nm이고 세기가 100 mW인 DPSS (Diode-pumped solid state, DPSS) 레이저를 사용하였고, 프로브빔으로는 파장이 633 nm이며 세기가 5 mW인 He-Ne 레이저를 사용하였다. 실험 결과 농도가 9.99, 11.10, 16.65, 19.98 mM일 때 비선형 흡수계수는 각각 0.046, 0.051, 0.136, 0.169 m/W였다. 또한 비선형 굴절률은 0.20, 0.51, 1.25, $1.32{\times}10^{-11}m^2/W$였고, 열확산도 평균치는 $1.33{\times}10^{-6}m^2/s$이었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. P. Kim, L. Shi, A. Majumdar and P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001). https://doi.org/10.1103/PhysRevLett.87.215502
  2. J. Hone, M. Whitney, C. Piskoti and A. Zettl. Phys. Rev. B 59, R2514 (1991).
  3. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965). https://doi.org/10.1063/1.1713919
  4. D. C. Smith, IEEE 65, 1679 (1977). https://doi.org/10.1109/PROC.1977.10809
  5. M. H. Mahdieh and B. Lotfi, Opt. Eng. 44, 096001 (2005). https://doi.org/10.1117/1.2050427
  6. S. X. Pu, L. Chen, W. Chen, W. Liao and Y. L. Chen et al., Appl. Phys. Lett. 87, 021905 (2005). https://doi.org/10.1063/1.1996841
  7. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990). https://doi.org/10.1109/3.53394
  8. M. Sheik-Bahae, A. A. Said and E. W. Van Stryland, Opt. Lett. 14, 955 (1989). https://doi.org/10.1364/OL.14.000955
  9. H. Kim, J. Lee and S. Kim, New Phys.: Sae Mulli 65, 757 (2015). https://doi.org/10.3938/NPSM.65.757
  10. H. J. Yu and S. W. Kim, Sae Mulli 49, 489 (2004).
  11. S. Y. Park, H. L. Yang and J. H. Kwak, Sae Mulli 53, 6 (2006).
  12. H. I. Elim, W. Ji, G. C. Meng, J. Y. Ouyang and S. H. Goh, J. Nonlinear Opt. Phys. 12, 175 (2003). https://doi.org/10.1142/S0218863503001316
  13. G. Sreelekha, G. Vidya, P. Radhakrishnan, C. P. G. Vallabhan and V. P. N. Nampoori, Optik 124, 3138 (2013). https://doi.org/10.1016/j.ijleo.2012.09.022
  14. S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi and A. K. Sood et al., Chem. Phys. Lett. 317, 510 (2000). https://doi.org/10.1016/S0009-2614(99)01304-4
  15. M. B. Alsous, M. D. Zidan, Z. Ajji and A. Allahham, Optik 125, 5160 (2014). https://doi.org/10.1016/j.ijleo.2014.06.012