Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1167

Measurement of Thermal Diffusivity and the Optical Properties of a Carbon Nanotube Dispersion by Using the Thermal Lens Effect  

Park, Hyunwoo (Department of Physics, University of Ulsan)
Kim, Hyunki (Department of Physics, University of Ulsan)
Kim, Sok Won (Department of Physics, University of Ulsan)
Lee, Joohyun (Korea Research Institute of Standards and Science)
Abstract
Carbon nanotubes (CNTs) are structures of carbon atoms bonded together in hexagonal honeycomb shapes, with multi-walled CNTs having a very high thermal conductivity of $3000W/m{\cdot}K$ and single-walled CNTs having a conductivity of $6000W/m{\cdot}K$. In this work, the transmittance and the thermal diffusivity of a multi-walled carbon nanotube dispersion with a concentration of 1.5 M were measured using a single beam method, a dual beam method, and the thermal lens effect. The nonlinear optical coefficients were obtained by using the z-scan method, which moved the sample in the direction of propagation of the single laser beam, propagation and the thermal diffusivity was measured using a double laser beam. As a pump beam, a diode-pumped solid state (DPSS) laser with a wavelength of 532 nm and an intensity of 100 mW was used. As the probe beam, a He-Ne laser having a wavelength of 633 nm and an intensity of 5 mW was used. The experimental result shows that when the concentrations of the sample were 9.99, 11.10, 16.65, and 19.98 mM, the nonlinear absorption coefficients were 0.046, 0.051, 0.136 and 0.169 m/W, respectively. Also, the nonlinear refractive indices were 0.20, 0.51, 1.25 and $1.32{\times}10^{-11}m^2/W$, respectively, and the average thermal diffusivity was $1.33{\times}10^{-6}m^2/s$.
Keywords
Thermal lens effect; Multi-walled carbon nanotube; Z-scan; Nonlinear optical coefficient; Thermal diffusivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Kim, L. Shi, A. Majumdar and P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).   DOI
2 J. Hone, M. Whitney, C. Piskoti and A. Zettl. Phys. Rev. B 59, R2514 (1991).
3 J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).   DOI
4 D. C. Smith, IEEE 65, 1679 (1977).   DOI
5 M. H. Mahdieh and B. Lotfi, Opt. Eng. 44, 096001 (2005).   DOI
6 S. X. Pu, L. Chen, W. Chen, W. Liao and Y. L. Chen et al., Appl. Phys. Lett. 87, 021905 (2005).   DOI
7 M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).   DOI
8 M. Sheik-Bahae, A. A. Said and E. W. Van Stryland, Opt. Lett. 14, 955 (1989).   DOI
9 H. Kim, J. Lee and S. Kim, New Phys.: Sae Mulli 65, 757 (2015).   DOI
10 H. J. Yu and S. W. Kim, Sae Mulli 49, 489 (2004).
11 S. Y. Park, H. L. Yang and J. H. Kwak, Sae Mulli 53, 6 (2006).
12 H. I. Elim, W. Ji, G. C. Meng, J. Y. Ouyang and S. H. Goh, J. Nonlinear Opt. Phys. 12, 175 (2003).   DOI
13 G. Sreelekha, G. Vidya, P. Radhakrishnan, C. P. G. Vallabhan and V. P. N. Nampoori, Optik 124, 3138 (2013).   DOI
14 S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi and A. K. Sood et al., Chem. Phys. Lett. 317, 510 (2000).   DOI
15 M. B. Alsous, M. D. Zidan, Z. Ajji and A. Allahham, Optik 125, 5160 (2014).   DOI