DOI QR코드

DOI QR Code

RAGE-binding peptide-conjugated polyethylenimine as a dual-functional carrier: A RAGE-mediated gene carrier and an anti-angiogenic reagent

  • Lee, Dahee (Department of Bioengineering, College of Engineering, Hanyang University) ;
  • Choi, Eunji (Department of Bioengineering, College of Engineering, Hanyang University) ;
  • Lee, Jaewon (Department of Bioengineering, College of Engineering, Hanyang University) ;
  • Oh, Jungju (Department of Bioengineering, College of Engineering, Hanyang University) ;
  • Lee, Seonyeong (Department of Bioengineering, College of Engineering, Hanyang University) ;
  • Lee, Minhyung (Department of Bioengineering, College of Engineering, Hanyang University)
  • Received : 2018.04.21
  • Accepted : 2018.06.28
  • Published : 2018.11.25

Abstract

Receptor for advanced glycation end-products (RAGE) is overexpressed in various cancer cells. In this study, a RAGE-binding peptide (RBP) was conjugated to polyethylenimine (25 kDa, PEI). RBP-conjugated PEI (PEI-RBP) was characterized as a dual-functional reagent, a RAGE-mediated gene carrier and an anti-angiogenic reagent. As a gene carrier, PEI-RBP had higher transfection efficiency to the C6 glioblastoma cells than PEI. As an anti-angiogenic reagent, the pEmpty/PEI-RBP complex reduced RAGE expression on the surface of the C6 glioblastoma cells. Also, the complex reduced the VEGF expression and tube formation of endothelial cells. Therefore, PEI-RBP may be useful for development of glioblastoma therapy.

Keywords

Acknowledgement

Supported by : NRF

References

  1. A. Bierhaus, P.M. Humpert, M. Morcos, T. Wendt, T. Chavakis, B. Arnold, D.M. Stern, P.P. Nawroth, J. Mol. Med. 83 (2005).
  2. A. Riehl, J. Nemeth, P. Angel, J. Hess, Cell Commun. Signal. 7 (2009).
  3. J. Xie, J.D. Mendez, V. Mendez-Valenzuela, M.M. Aguilar-Hernandez, Cell Signal. 25 (2013).
  4. C.D. Logsdon, M.K. Fuentes, E.H. Huang, T. Arumugam, Curr. Mol. Med. 7 (2007).
  5. T. Chavakis, A. Bierhaus, P.P. Nawroth, Microbes Infect. 6 (2004).
  6. R. Blondonnet, J. Audard, C. Belville, G. Clairefond, J. Lutz, D. Bouvier, L. Roszyk, C. Gross, M. Lavergne, M. Fournet, L. Blanchon, C. Vachias, C. Damon-Soubeyrand, V. Sapin, J.M. Constantin, M. Jabaudon, Sci. Rep. 7 (2017).
  7. X. Chen, L. Zhang, I.Y. Zhang, J. Liang, H. Wang, M. Ouyang, S. Wu, A.C. da Fonseca, L. Weng, Y. Yamamoto, H. Yamamoto, R. Natarajan, B. Badie, Cancer Res. 74 (2014).
  8. S. Lee, C. Piao, G. Kim, J.Y. Kim, E. Choi, M. Lee, Eur. J. Pharm. Sci. 114 (2018).
  9. A. Maczurek, K. Shanmugam, G. Munch, Ann. N. Y. Acad. Sci. (2008) 1126.
  10. L.G. Bucciarelli, T. Wendt, L. Rong, E. Lalla, M.A. Hofmann, M.T. Goova, A. Taguchi, S.F. Yan, S.D. Yan, D.M. Stern, A.M. Schmidt, Cell. Mol. Life Sci. 59 (2002).
  11. S.F. Yan, R. Ramasamy, A.M. Schmidt, Nat. Clin. Pract. Endocrinol. Metab. 4 (2008).
  12. T. Wyss-Coray, J. Rogers, Cold Spring Harb. Perspect. Med. 2 (2012).
  13. D. Tang, R. Kang, C.W. Cheh, K.M. Livesey, X. Liang, N.E. Schapiro, R. Benschop, L. J. Sparvero, A.A. Amoscato, K.J. Tracey, H.J. Zeh, M.T. Lotze, Oncogene 29 (2010).
  14. J. DiNorcia, D.N. Moroziewicz, N. Ippagunta, M.K. Lee, M. Foster, H.Z. Rotterdam, F. Bao, Y.S. Zhou, S.F. Yan, J. Emond, A.M. Schmidt, J.D. Allendorf, J. Gastrointest. Surg. 14 (2010).
  15. R. Kang, D. Tang, N.E. Schapiro, K.M. Livesey, A. Farkas, P. Loughran, A. Bierhaus, M.T. Lotze, H.J. Zeh, Cell Death Differ. 17 (2010).
  16. C.B. Zhao, J.M. Bao, Y.J. Lu, T. Zhao, X.H. Zhou, D.Y. Zheng, S.C. Zhao, Am. J. Cancer Res. 4 (2014).
  17. R. Kang, W. Hou, Q. Zhang, R. Chen, Y.J. Lee, D.L. Bartlett, M.T. Lotze, D. Tang, H.J. Zeh, Cell Death Dis. 5 (2014).
  18. C. Gebhardt, A. Riehl, M. Durchdewald, J. Nemeth, G. Furstenberger, K. Muller-Decker, A. Enk, B. Arnold, A. Bierhaus, P.P. Nawroth, J. Hess, P. Angel, J. Exp. Med. 205 (2008).
  19. W. Li, Q. Xu, Y. Deng, Z. Yang, S. Xing, X. Zhao, P. Zhu, X. Wang, Z. He, Y. Gao, Lab. Invest. 95 (2015).
  20. Y.H. Hwang, M.J. Kim, Y.K. Lee, M. Lee, D.Y. Lee, J. Control. Release 246 (2016).
  21. B. Oh, M. Lee, J. Control. Release 175 (2014).
  22. S. Banerjee, T.K. Kundu, Nucleic Acids Res. 31 (2003).
  23. J.H. Song, J.Y. Kim, C. Piao, S. Lee, B. Kim, S.J. Song, J.S. Choi, M. Lee, J. Control. Release 234 (2016).
  24. J. Hong, S.H. Ku, M.S. Lee, J.H. Jeong, H. Mok, D. Choi, S.H. Kim, Biomaterials 35 (2014).
  25. H. Liang, Y. Zhong, S. Zhou, L. Peng, Cancer Lett. 313 (2011).
  26. J. DiNorcia, M.K. Lee, D.N. Moroziewicz, M. Winner, P. Suman, F. Bao, H.E. Remotti, Y.S. Zou, S.F. Yan, W. Qiu, G.H. Su, A.M. Schmidt, J.D. Allendorf, J. Gastrointest. Surg. 16 (2012).
  27. N. Lanati, E. Emanuele, N. Brondino, D. Geroldi, Curr. Vasc. Pharmacol. 8 (2010).
  28. S. Yamagishi, K. Nakamura, T. Matsui, S. Ueda, K. Fukami, S. Okuda, Expert Opin. Investig. Drugs 17 (2008).
  29. M. Lee, J. Rentz, S.O. Han, D.A. Bull, S.W. Kim, Gene Ther. 10 (2003).
  30. G.F. Lemkine, D. Goula, N. Becker, L. Paleari, G. Levi, B.A. Demeneix, J. Drug Target. 7 (1999).
  31. M.P. Turunen, M.O. Hiltunen, M. Ruponen, L. Virkamaki, F.C. Szoka Jr., A. Urtti, S. Yla-Herttuala, Gene Ther. 6 (1999).
  32. H.K. Nguyen, P. Lemieux, S.V. Vinogradov, C.L. Gebhart, N. Guerin, G. Paradis, T. K. Bronich, V.Y. Alakhov, A.V. Kabanov, Gene Ther. 7 (2000).
  33. T. Rhim, D.Y. Lee, M. Lee, J. Control. Release 172 (2013).
  34. N. Varda-Bloom, A. Shaish, A. Gonen, K. Levanon, S. Greenbereger, S. Ferber, H. Levkovitz, D. Castel, I. Goldberg, A. Afek, Y. Kopolovitc, D. Harats, Gene Ther. 8 (2001).
  35. M. Andrassy, H.C. Volz, J.C. Igwe, B. Funke, S.N. Eichberger, Z. Kaya, S. Buss, F. Autschbach, S.T. Pleger, I.K. Lukic, F. Bea, S.E. Hardt, P.M. Humpert, M.E. Bianchi, H. Mairbaurl, P.P. Nawroth, A. Remppis, H.A. Katus, A. Bierhaus, Circulation 117 (2008).
  36. I. Helfrich, D. Schadendorf, Mol. Oncol. 5 (2011).

Cited by

  1. Inhalable Gene Delivery System Using a Cationic RAGE-Antagonist Peptide for Gene Delivery to Inflammatory Lung Cells vol.5, pp.5, 2018, https://doi.org/10.1021/acsbiomaterials.9b00004
  2. A dual-functional buformin-mimicking poly(amido amine) for efficient and safe gene delivery vol.28, pp.9, 2018, https://doi.org/10.1080/1061186x.2020.1729770
  3. Intranasal delivery of self-assembled nanoparticles of therapeutic peptides and antagomirs elicits anti-tumor effects in an intracranial glioblastoma model vol.13, pp.35, 2018, https://doi.org/10.1039/d1nr03455c