DOI QR코드

DOI QR Code

Deposition of Fine Linewidth Silver Layer using a Modified Laser-induced Forward Transfer Technique

  • Cheon, Jonggyu (Department of Materials Science and Engineering, Inha University) ;
  • Nguyen, Manh-Cuong (Department of Materials Science and Engineering, Inha University) ;
  • Nguyen, An Hoang-Thuy (Department of Materials Science and Engineering, Inha University) ;
  • Choi, Sujin (Department of Materials Science and Engineering, Inha University) ;
  • Ji, Hyung-Min (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Sang-Woo (Department of Materials Science and Engineering, Inha University) ;
  • Yu, Kyoung-Moon (Department of Materials Science and Engineering, Inha University) ;
  • Kim, Jin-Hyun (Department of Materials Science and Engineering, Inha University) ;
  • Cho, Seong-Yong (Department of Materials Science and Engineering, Inha University) ;
  • Choi, Rino (Department of Materials Science and Engineering, Inha University)
  • Received : 2018.02.27
  • Accepted : 2018.05.08
  • Published : 2018.11.15

Abstract

This paper reports the deposition of a metal line using a multilayer stack and laser-induced forward transfer (LIFT) using a low cost continuous wave blue laser with a wavelength of 450 nm. The donor structure was composed of a light-to-heat (LTH) layer, a release layer, and a transfer layer in series. Amorphous silicon as the LTH layer absorbs photon energy and converts it to heat. A release layer was melted so that a silver transfer layer would be transferred to the receiver substrate. The transferred silver layer showed reasonable physical and electrical characteristics. A low cost fine linewidth metal layer could be achieved using this modified LIFT technique and blue laser.

Keywords

Acknowledgement

Supported by : Inha University

References

  1. J. Bohandy, B. F. Kim and F. J. Adrian, Journal of Applied Physics 60, 1538 (1986). https://doi.org/10.1063/1.337287
  2. M. Zenou, A. Sa'ar and Z. Kotler, small 11, 4082 (2015). https://doi.org/10.1002/smll.201500612
  3. Z. Kantor, Z. Toth and T. Szorenyi, Applied Physics Letters, 64, 3506 (1994). https://doi.org/10.1063/1.111255
  4. I. Zergiotia, S. Mailisa, N. A. Vaionosa, C. Fotakisa, S. Chenb and C. P. Grigorpoulosb, Applied Surface Science 127-129, 601 (1998). https://doi.org/10.1016/S0169-4332(97)00713-7
  5. M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu et al., Nanotechnology 23, 444013 (2012). https://doi.org/10.1088/0957-4484/23/44/444013
  6. C. Constantinescu, A. K. Diallo, L. Rapp, P. Cremillieu, R. Mazurczyk et al., Applied Surface Science, 336, 11 (2015). https://doi.org/10.1016/j.apsusc.2014.06.155
  7. L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackemann, F. Fages and P. Delaporte, Applied Physics Letters 95, 171109 (2009). https://doi.org/10.1063/1.3255011
  8. M. Zenou, A. Sa'ar and Z. Kotler, Journal of Physics D: Applied Physics 48, 205303 (2015). https://doi.org/10.1088/0022-3727/48/20/205303
  9. A. I. Kuznetsov, R. Kiyan and B. N. Chichkov, Optical Society of America 18, 21198 (2010).
  10. Z. Galazka, R. Uecker and R. Fornari, Journal of Crystal Growth 388, 61 (2014). https://doi.org/10.1016/j.jcrysgro.2013.11.049
  11. J. Lopez-Vidrier, S. Lauzurica, D. Canteli and M. Llusca, Journal of Luminescence 185, 112 (2017). https://doi.org/10.1016/j.jlumin.2016.12.052
  12. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). https://doi.org/10.1103/PhysRevB.6.4370
  13. W. S. M. Werner, K. Glantschnig and C. Ambrosch-Draxl, Journal of Physical and Chemical Reference Date 38, 1013 (2009). https://doi.org/10.1063/1.3243762
  14. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist and M. R. Querry, Applied Optics 27, 1203 (1988). https://doi.org/10.1364/AO.27.001203
  15. D. T. Pierce and W. E. Spicer, Phys. Rev. B 5, 3017 (1972). https://doi.org/10.1103/PhysRevB.5.3017
  16. M. R. Querry, Optical constants of minerals and other materials from the millimeter to the ultraviolet (1987).
  17. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. lotti et al., ACS Photonics 2, 326 (2015). https://doi.org/10.1021/ph5004237

Cited by

  1. Fabrication of periodic microscale stripes of silver by laser interference induced forward transfer and their SERS properties vol.33, pp.11, 2018, https://doi.org/10.1088/1361-6528/ac3e34