DOI QR코드

DOI QR Code

Ultrathin graphene-like 2D porous carbon nanosheets and its excellent capacitance retention for supercapacitor

  • Gopalakrishnan, Arthi (Department of Electrical Engineering, Indian Institute of Technology Hyderabad) ;
  • Badhulika, Sushmee (Department of Electrical Engineering, Indian Institute of Technology Hyderabad)
  • Received : 2018.06.28
  • Accepted : 2018.07.27
  • Published : 2018.12.25

Abstract

Here, a controlled green synthesis route involving hydrothermal pre-carbonization cum pyrolysis is reported that converts cucumber into graphene-like carbon nanosheets for supercapacitor application. Transmission electron microscopy analysis reveals the formation of ultra-thin carbon nanosheets with distributed pores. This cucumber derived carbon exhibits high specific capacitance of $143F\;g^{-1}$ in aqueous electrolyte. The two-electrode symmetric cell exhibits a specific capacitance of $58F\;g^{-1}$ at high current density, and high capacitance retention of 97% after 1000 cycles. This simple low-cost process involving widely available cucumber as biomass precursor is a promising, commercially viable approach for developing high-performance supercapacitors.

Keywords

Acknowledgement

Supported by : Department of Science and Technology (DST), Scientific and Engineering Research Board (SERB)

References

  1. M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Nat. Commun. 7 (2016) 12647. https://doi.org/10.1038/ncomms12647
  2. B. Li, P. Gu, Y. Feng, G. Zheng, K. Huang, H. Xue, H. Pang, Adv. Funct. Mater. 27 (2017) 1605784. https://doi.org/10.1002/adfm.201605784
  3. Y. Xu, S. Zheng, H. Tang, X. Guo, H. Xue, H. Pang, Energy Storage Mater. 9 (2017) 11. https://doi.org/10.1016/j.ensm.2017.06.002
  4. S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Adv. Energy Mater. 7 (2017) 1602733. https://doi.org/10.1002/aenm.201602733
  5. Y. Xu, B. Li, S. Zheng, P. Wu, J. Zhan, H. Xue, Q. Xu, H. Pang, J. Mater. Chem. A (2018), doi:http://dx.doi.org/10.1039/C8TA03128B.
  6. Q. Li, S. Zheng, Y. Xu, H. Xue, H. Pang, Chem. Eng. J. 33 (2018) 505.
  7. M.V. Kiamahalleh, S.H.S. Zein, G. Najafpour, S.A. Sata, S. Buniran, Nano 7 (2012) 1.
  8. D. Upare, S. Yoon, C. Lee, Korean J. Chem. Eng. 28 (2011) 731. https://doi.org/10.1007/s11814-010-0460-8
  9. E. Frackowiak, F. Beguin, Carbon 39 (2001) 937. https://doi.org/10.1016/S0008-6223(00)00183-4
  10. D.O. Cooney, Activated Charcoal: Antidotal and Other Medical Uses, M. Dekker, New York, USA, 1980.
  11. Y. Han, X. Dong, C. Zhang, S. Liu, J. Power Sources 211 (2012) 92. https://doi.org/10.1016/j.jpowsour.2012.03.053
  12. M. Chen, X. Kang, T. Wumaier, J. Dou, B. Gao, Y. Han, G. Xu, Z. Liu, L. Zhang, J. Solid State Electrochem. 17 (2013) 1005. https://doi.org/10.1007/s10008-012-1946-6
  13. M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 6 (2013) 1249. https://doi.org/10.1039/c3ee22325f
  14. W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energy Environ. Sci. 7 (2014) 379. https://doi.org/10.1039/C3EE43111H
  15. F. Gao, J. Qu, Z. Zhao, Z. Wang, J. Qiu, J. Electrochim. Acta. 190 (2016) 1134. https://doi.org/10.1016/j.electacta.2016.01.005
  16. H. Wang, Z. Li, K.T. Jin, C.M.B. Holt, X. Tan, Z. Xu, B.S. Amirkhiz, D. Harfield, A. Anyia, T. Stephenson, D. Mitlin, Carbon 57 (2013) 317. https://doi.org/10.1016/j.carbon.2013.01.079
  17. Z. Li, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B.C. Olsen, C.M.B. Holt, D. Miltin, Adv. Energy Mater. 2 (2012) 431. https://doi.org/10.1002/aenm.201100548
  18. P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845. https://doi.org/10.1038/nmat2297
  19. R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Chem. Soc. Rev. 38 (2009) 3401. https://doi.org/10.1039/b822668g
  20. Y. Fang, D. Gu, Y. Zou, Z. Wu, F. Li, R. Che, Y. Deng, B. Tu, D. Zhao, Angew. Chem. Int. Ed. 49 (2010) 7987. https://doi.org/10.1002/anie.201002849
  21. L. Zhao, X. Chen, X. Wang, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.M. Titirici, Adv. Mater. 22 (2010) 3317. https://doi.org/10.1002/adma.201000660
  22. Y. Guo, L. Wang, B. Zou, C. Rong, X. Ma, Y. Qu, Y. Li, Z. Wang, Bioresour. Technol. 102 (2011) 1947. https://doi.org/10.1016/j.biortech.2010.08.100
  23. J.P. Paraknowitsch, A. Thomas, M. Antonietti, Chem. Mater. 21 (2009) 1170. https://doi.org/10.1021/cm801586c
  24. R.J. White, K. Tauer, M. Antonietti, M.-M. Titirici, J. Am. Chem. Soc. 132 (2011) 17360.
  25. B.R. Selvi, D. Jagadeesan, B.S. Suma, G. Nagashankar, M. Arif, M. Eswaramoorthy, K. Balasubramanyam, T.K. Kundu, Nano Lett. 8 (2008) 3182. https://doi.org/10.1021/nl801503m
  26. "2012 Agricultural Statistics Annual." United States Department of Agriculture National Agricultural Statistics Service. USDA, 23 Oct. 2015. Web. 02 Dec. 2015.
  27. H.D. Belitz, W. Grosch, Chemistry of Food, Ed. Acribia S.A., Zaragoza, 1997 p. 825.
  28. D. Zhou, H. Wang, N. Mao, Y. Chen, Y. Zhou, T. Yin, H. Xie, W. Liu, S. Chen, X. Wang, Microporous Mesoporous Mater. 241 (2017) 202. https://doi.org/10.1016/j.micromeso.2017.01.001
  29. Y. Cao, Z. Zhang, J. Long, J. Liang, H. Lin, H. Lin, X. Wang, J. Mater. Chem. A 2 (2014) 17797. https://doi.org/10.1039/C4TA03070B
  30. D. Mhamane, W. Ramadan, M. Fawzy, A. Rana, M. Dubey, C. Rode, B. Lefez, B. Hannoyerd, S. Ogale, Green Chem. 13 (2011) 1990. https://doi.org/10.1039/c1gc15393e
  31. T. Shimada, T. Sugai, C. Fantini, M. Souza, L.G. Cancado, A. Jorio, M.A. Pimenta, R. Saito, A. Gruneis, G. Dresselhaus, M.S. Dresselhaus, Y. Ohno, T. Mizutani, H. Shinohara, Carbon 43 (2005) 1049. https://doi.org/10.1016/j.carbon.2004.11.044
  32. X. Sun, Y. Li, Angew. Chem. Int. Ed. 23 (2004) 597.
  33. T. Xu, J. Song, M.L. Gordin, H. Sohn, Z. Yu, S. Chen, D. Wang, ACS Appl. Mater. Interfaces 5 (2013) 11355. https://doi.org/10.1021/am4035784
  34. K. Yuan, P. Guo-Wang, T. Hu, L. Shi, R. Zeng, M. Forster, T. Pichler, Y. Chen, U. Scherf, Chem. Mater. 27 (2015) 7403. https://doi.org/10.1021/acs.chemmater.5b03290
  35. G.V. Plaksin, O.N. Baklanova, V.K. Duplyakin, V.A. Drozdov, in: A.V. Bridgwater (Ed.), Progress in Thermochemical Biomass Conversion, Blackwell Science Ltd, Oxford, UK, 2001.
  36. Y. Zhao, L. Hu, S. Zhao, L. Wu, Adv. Funct. Mater. 26 (2016) 4085. https://doi.org/10.1002/adfm.201600494
  37. L. Xu, Y. Zhao, J. Lian, Y. Xu, J. Bao, J. Qiu, L. Xu, H. Xu, M. Hua, H. Li, Energy 123 (2017) 296. https://doi.org/10.1016/j.energy.2017.02.018
  38. Y. Zhao, L. Xu, S. Huang, J. Bao, J. Qiu, J. Lian, L. Xu, Y. Huang, Y. Xu, H. Li, J. Alloys Compd. 702 (2017) 178. https://doi.org/10.1016/j.jallcom.2017.01.125
  39. Y. Zhao, Y. Xu, J. Zeng, B. Kong, X. Geng, D. Li, X. Gao, K. Liang, L. Xu, J. Lian, S. Huang, J. Qiu, Y. Huang, H. Li, RSC Adv. 7 (2017) 55513. https://doi.org/10.1039/C7RA11741H
  40. Y. Zhang, Y. Zhao, S. Cao, Z. Yin, L. Cheng, L. Wu, ACS Appl. Mater. Interfaces 7 (2017) 29982.
  41. H. Wang, Z. Liu, X. Chen, P. Han, S. Dong, G. Cui, J. Solid State Electrochem. 15 (2011) 1179. https://doi.org/10.1007/s10008-010-1183-9
  42. L. Katarzyna, S. Agnieszka, A. Ilona, CHEMIK 67 (2013) 1138.
  43. C. Kim, J.W. Lee, J.H. Kim, K.S. Yang, Korean J. Chem. Eng. 23 (2006) 592. https://doi.org/10.1007/BF02706799
  44. V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, J. Phys. Chem. C. 111 (2007) 7527. https://doi.org/10.1021/jp067009t
  45. Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang, L. Zhou, J. Power Sources 225 (2013) 101. https://doi.org/10.1016/j.jpowsour.2012.10.022
  46. C.C. Hu, C.C. Wang, F.C. Wu, R.L. Tseng, Electrochim. Acta 52 (2007) 2498. https://doi.org/10.1016/j.electacta.2006.08.061
  47. M.R. Jisha, Y.J. Hwang, J.S. Shin, K.S. Nahm, T.P. Kumar, K. Karthikeyan, N. Dhanikaivelu, D. Kalpana, N.G. Renganatham, A.M. Stephan, Mater. Chem. Phys. 115 (2009) 33. https://doi.org/10.1016/j.matchemphys.2008.11.010
  48. K. Gao, Q. Niu, Q. Tang, Y. Guo, L. Wang, J. Electron. Mater. 47 (2018) 337. https://doi.org/10.1007/s11664-017-5771-7
  49. Q. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai, F. Kang, Q.H. Yang, Nanoscale 6 (2014) 13831. https://doi.org/10.1039/C4NR04541F
  50. F. Ma, J. Wan, G. Wu, H. Zhao, RSC Adv. 5 (2015) 44416. https://doi.org/10.1039/C5RA05090A
  51. Z. Li, W. Lv, C. Zhang, B. Li, F. Kang, Q.-H. Yang, Carbon 92 (2015) 11. https://doi.org/10.1016/j.carbon.2015.02.054
  52. W.H. Qu, Y.Y. Xu, A.H. Lu, X.Q. Zhang, W.C. Li, Bioresour. Technol. 189 (2015) 285. https://doi.org/10.1016/j.biortech.2015.04.005
  53. T.E. Rufford, D. Hulicova-Jurcakova, E. Fiset, Z. Zhu, G.Q. Lu, Electrochem. Commun. 11 (2009) 974. https://doi.org/10.1016/j.elecom.2009.02.038
  54. L. Cheng, P. Guo, R. Wang, L. Ming, F. Leng, H. Li, X. Zhao, Colloids Surf. A: Physicochem. Eng. Aspects 446 (2014) 127. https://doi.org/10.1016/j.colsurfa.2014.01.057
  55. A. Gopalakrishnan, P. Sahatiya, S. Badhulika, Mater. Lett. 198 (2017) 46. https://doi.org/10.1016/j.matlet.2017.03.182
  56. M. Chen, X. Kang, T. Wumaier, J. Dou, B. Gao, Y. Han, G. Xu, Z. Liu, L. Zhang, J. Solid State Electrochem. 17 (2013) 1005. https://doi.org/10.1007/s10008-012-1946-6

Cited by

  1. Molten Salt Electrosynthesis of Cr2AlC-Derived Porous Carbon for Supercapacitors vol.7, pp.15, 2018, https://doi.org/10.1021/acssuschemeng.9b01944
  2. Nanoscale/microscale porous graphene-like sheets derived from different tissues and components of cane stalk for high-performance supercapacitors vol.54, pp.22, 2018, https://doi.org/10.1007/s10853-019-03910-0
  3. High-performance electrochemical capacitor based on cuprous oxide/graphene nanocomposite electrode material synthesized by microwave irradiation method vol.2, pp.4, 2018, https://doi.org/10.1007/s42247-019-00061-5
  4. Nitrogen and oxygen co-doped broccoli-like porous carbon nanosheets derived from sericin for high-performance supercapacitors vol.510, pp.None, 2020, https://doi.org/10.1088/1755-1315/510/2/022027
  5. Facile sonochemical assisted synthesis of a hybrid red-black phosphorus/sulfonated porous carbon composite for high-performance supercapacitors vol.56, pp.52, 2018, https://doi.org/10.1039/d0cc02806a
  6. Three‐dimensional nitrogen rich bubbled porous carbon sponge for supercapacitor & pressure sensing applications vol.44, pp.9, 2018, https://doi.org/10.1002/er.5434
  7. High‐Performance Aqueous Supercapacitors Based on Biomass‐Derived Multiheteroatom Self‐Doped Porous Carbon Membranes vol.8, pp.9, 2018, https://doi.org/10.1002/ente.202000391
  8. Facile Synthesis of Highly Porous N-Doped Carbon Nanosheets with Silica Nanoparticles for Ultrahigh Capacitance Supercapacitors vol.34, pp.9, 2018, https://doi.org/10.1021/acs.energyfuels.0c02078
  9. Facile Synthesis of Highly Porous N-Doped Carbon Nanosheets with Silica Nanoparticles for Ultrahigh Capacitance Supercapacitors vol.34, pp.9, 2018, https://doi.org/10.1021/acs.energyfuels.0c02078
  10. Electrical property enhancement of poly (vinyl alcohol-co-ethylene)-based gel polymer electrolyte incorporated with triglyme for electric double-layer capacitors (EDLCs) vol.27, pp.1, 2018, https://doi.org/10.1007/s11581-020-03787-z
  11. High power flexible supercapacitor electrodes based on a surface modified C60 - β Ni(OH)2 nanocomposite vol.26, pp.None, 2018, https://doi.org/10.1016/j.mtcomm.2020.101825
  12. Carbon Nanotube–Manganese oxide nanorods hybrid composites for high-performance supercapacitor materials vol.97, pp.None, 2018, https://doi.org/10.1016/j.jiec.2021.02.002
  13. A comprehensive review on selected graphene synthesis methods: from electrochemical exfoliation through rapid thermal annealing towards biomass pyrolysis vol.9, pp.21, 2018, https://doi.org/10.1039/d1tc01316e
  14. A comprehensive review on selected graphene synthesis methods: from electrochemical exfoliation through rapid thermal annealing towards biomass pyrolysis vol.9, pp.21, 2018, https://doi.org/10.1039/d1tc01316e
  15. Highly selective trace level detection of DNA damage biomarker using iron-based MAX compound modified screen-printed carbon electrode using differential pulse voltammetry vol.3, pp.None, 2021, https://doi.org/10.1016/j.snr.2021.100057
  16. Three-Dimensional Hierarchical Porous Carbons Derived from Betelnut Shells for Supercapacitor Electrodes vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247793
  17. Recycling decoration wastes toward a high-performance porous carbon membrane electrode for supercapacitive energy storage devices vol.46, pp.1, 2018, https://doi.org/10.1039/d1nj04738h
  18. SDBS induced glucose urea derived microporous 2D carbon nanosheets as supercapacitor electrodes with excellent electrochemical performances vol.403, pp.None, 2018, https://doi.org/10.1016/j.electacta.2021.139677
  19. Multi-Doped Interconnected Carbon Nanospheres for High-Performance Supercapacitor vol.19, pp.2, 2018, https://doi.org/10.1115/1.4052162