Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.07.052

Ultrathin graphene-like 2D porous carbon nanosheets and its excellent capacitance retention for supercapacitor  

Gopalakrishnan, Arthi (Department of Electrical Engineering, Indian Institute of Technology Hyderabad)
Badhulika, Sushmee (Department of Electrical Engineering, Indian Institute of Technology Hyderabad)
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 257-266 More about this Journal
Abstract
Here, a controlled green synthesis route involving hydrothermal pre-carbonization cum pyrolysis is reported that converts cucumber into graphene-like carbon nanosheets for supercapacitor application. Transmission electron microscopy analysis reveals the formation of ultra-thin carbon nanosheets with distributed pores. This cucumber derived carbon exhibits high specific capacitance of $143F\;g^{-1}$ in aqueous electrolyte. The two-electrode symmetric cell exhibits a specific capacitance of $58F\;g^{-1}$ at high current density, and high capacitance retention of 97% after 1000 cycles. This simple low-cost process involving widely available cucumber as biomass precursor is a promising, commercially viable approach for developing high-performance supercapacitors.
Keywords
Biomass-derived; Cucumber; Carbon nanosheets; Graphene-like; Supercapacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B.R. Selvi, D. Jagadeesan, B.S. Suma, G. Nagashankar, M. Arif, M. Eswaramoorthy, K. Balasubramanyam, T.K. Kundu, Nano Lett. 8 (2008) 3182.   DOI
2 "2012 Agricultural Statistics Annual." United States Department of Agriculture National Agricultural Statistics Service. USDA, 23 Oct. 2015. Web. 02 Dec. 2015.
3 H.D. Belitz, W. Grosch, Chemistry of Food, Ed. Acribia S.A., Zaragoza, 1997 p. 825.
4 D. Zhou, H. Wang, N. Mao, Y. Chen, Y. Zhou, T. Yin, H. Xie, W. Liu, S. Chen, X. Wang, Microporous Mesoporous Mater. 241 (2017) 202.   DOI
5 Y. Cao, Z. Zhang, J. Long, J. Liang, H. Lin, H. Lin, X. Wang, J. Mater. Chem. A 2 (2014) 17797.   DOI
6 D. Mhamane, W. Ramadan, M. Fawzy, A. Rana, M. Dubey, C. Rode, B. Lefez, B. Hannoyerd, S. Ogale, Green Chem. 13 (2011) 1990.   DOI
7 T. Shimada, T. Sugai, C. Fantini, M. Souza, L.G. Cancado, A. Jorio, M.A. Pimenta, R. Saito, A. Gruneis, G. Dresselhaus, M.S. Dresselhaus, Y. Ohno, T. Mizutani, H. Shinohara, Carbon 43 (2005) 1049.   DOI
8 X. Sun, Y. Li, Angew. Chem. Int. Ed. 23 (2004) 597.
9 T. Xu, J. Song, M.L. Gordin, H. Sohn, Z. Yu, S. Chen, D. Wang, ACS Appl. Mater. Interfaces 5 (2013) 11355.   DOI
10 K. Yuan, P. Guo-Wang, T. Hu, L. Shi, R. Zeng, M. Forster, T. Pichler, Y. Chen, U. Scherf, Chem. Mater. 27 (2015) 7403.   DOI
11 G.V. Plaksin, O.N. Baklanova, V.K. Duplyakin, V.A. Drozdov, in: A.V. Bridgwater (Ed.), Progress in Thermochemical Biomass Conversion, Blackwell Science Ltd, Oxford, UK, 2001.
12 Y. Zhao, L. Hu, S. Zhao, L. Wu, Adv. Funct. Mater. 26 (2016) 4085.   DOI
13 L. Xu, Y. Zhao, J. Lian, Y. Xu, J. Bao, J. Qiu, L. Xu, H. Xu, M. Hua, H. Li, Energy 123 (2017) 296.   DOI
14 H. Wang, Z. Liu, X. Chen, P. Han, S. Dong, G. Cui, J. Solid State Electrochem. 15 (2011) 1179.   DOI
15 Y. Zhao, L. Xu, S. Huang, J. Bao, J. Qiu, J. Lian, L. Xu, Y. Huang, Y. Xu, H. Li, J. Alloys Compd. 702 (2017) 178.   DOI
16 Y. Zhao, Y. Xu, J. Zeng, B. Kong, X. Geng, D. Li, X. Gao, K. Liang, L. Xu, J. Lian, S. Huang, J. Qiu, Y. Huang, H. Li, RSC Adv. 7 (2017) 55513.   DOI
17 Y. Zhang, Y. Zhao, S. Cao, Z. Yin, L. Cheng, L. Wu, ACS Appl. Mater. Interfaces 7 (2017) 29982.
18 L. Katarzyna, S. Agnieszka, A. Ilona, CHEMIK 67 (2013) 1138.
19 C. Kim, J.W. Lee, J.H. Kim, K.S. Yang, Korean J. Chem. Eng. 23 (2006) 592.   DOI
20 V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, J. Phys. Chem. C. 111 (2007) 7527.   DOI
21 Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang, L. Zhou, J. Power Sources 225 (2013) 101.   DOI
22 C.C. Hu, C.C. Wang, F.C. Wu, R.L. Tseng, Electrochim. Acta 52 (2007) 2498.   DOI
23 F. Ma, J. Wan, G. Wu, H. Zhao, RSC Adv. 5 (2015) 44416.   DOI
24 M.R. Jisha, Y.J. Hwang, J.S. Shin, K.S. Nahm, T.P. Kumar, K. Karthikeyan, N. Dhanikaivelu, D. Kalpana, N.G. Renganatham, A.M. Stephan, Mater. Chem. Phys. 115 (2009) 33.   DOI
25 K. Gao, Q. Niu, Q. Tang, Y. Guo, L. Wang, J. Electron. Mater. 47 (2018) 337.   DOI
26 Q. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai, F. Kang, Q.H. Yang, Nanoscale 6 (2014) 13831.   DOI
27 Z. Li, W. Lv, C. Zhang, B. Li, F. Kang, Q.-H. Yang, Carbon 92 (2015) 11.   DOI
28 W.H. Qu, Y.Y. Xu, A.H. Lu, X.Q. Zhang, W.C. Li, Bioresour. Technol. 189 (2015) 285.   DOI
29 A. Gopalakrishnan, P. Sahatiya, S. Badhulika, Mater. Lett. 198 (2017) 46.   DOI
30 L. Cheng, P. Guo, R. Wang, L. Ming, F. Leng, H. Li, X. Zhao, Colloids Surf. A: Physicochem. Eng. Aspects 446 (2014) 127.   DOI
31 M. Chen, X. Kang, T. Wumaier, J. Dou, B. Gao, Y. Han, G. Xu, Z. Liu, L. Zhang, J. Solid State Electrochem. 17 (2013) 1005.   DOI
32 M.V. Kiamahalleh, S.H.S. Zein, G. Najafpour, S.A. Sata, S. Buniran, Nano 7 (2012) 1.
33 T.E. Rufford, D. Hulicova-Jurcakova, E. Fiset, Z. Zhu, G.Q. Lu, Electrochem. Commun. 11 (2009) 974.   DOI
34 M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Nat. Commun. 7 (2016) 12647.   DOI
35 B. Li, P. Gu, Y. Feng, G. Zheng, K. Huang, H. Xue, H. Pang, Adv. Funct. Mater. 27 (2017) 1605784.   DOI
36 Y. Xu, S. Zheng, H. Tang, X. Guo, H. Xue, H. Pang, Energy Storage Mater. 9 (2017) 11.   DOI
37 S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Adv. Energy Mater. 7 (2017) 1602733.   DOI
38 Y. Xu, B. Li, S. Zheng, P. Wu, J. Zhan, H. Xue, Q. Xu, H. Pang, J. Mater. Chem. A (2018), doi:http://dx.doi.org/10.1039/C8TA03128B.   DOI
39 Q. Li, S. Zheng, Y. Xu, H. Xue, H. Pang, Chem. Eng. J. 33 (2018) 505.
40 D. Upare, S. Yoon, C. Lee, Korean J. Chem. Eng. 28 (2011) 731.   DOI
41 E. Frackowiak, F. Beguin, Carbon 39 (2001) 937.   DOI
42 D.O. Cooney, Activated Charcoal: Antidotal and Other Medical Uses, M. Dekker, New York, USA, 1980.
43 H. Wang, Z. Li, K.T. Jin, C.M.B. Holt, X. Tan, Z. Xu, B.S. Amirkhiz, D. Harfield, A. Anyia, T. Stephenson, D. Mitlin, Carbon 57 (2013) 317.   DOI
44 Y. Han, X. Dong, C. Zhang, S. Liu, J. Power Sources 211 (2012) 92.   DOI
45 M. Chen, X. Kang, T. Wumaier, J. Dou, B. Gao, Y. Han, G. Xu, Z. Liu, L. Zhang, J. Solid State Electrochem. 17 (2013) 1005.   DOI
46 M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 6 (2013) 1249.   DOI
47 W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energy Environ. Sci. 7 (2014) 379.   DOI
48 F. Gao, J. Qu, Z. Zhao, Z. Wang, J. Qiu, J. Electrochim. Acta. 190 (2016) 1134.   DOI
49 Z. Li, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B.C. Olsen, C.M.B. Holt, D. Miltin, Adv. Energy Mater. 2 (2012) 431.   DOI
50 P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845.   DOI
51 R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Chem. Soc. Rev. 38 (2009) 3401.   DOI
52 Y. Fang, D. Gu, Y. Zou, Z. Wu, F. Li, R. Che, Y. Deng, B. Tu, D. Zhao, Angew. Chem. Int. Ed. 49 (2010) 7987.   DOI
53 L. Zhao, X. Chen, X. Wang, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, M.M. Titirici, Adv. Mater. 22 (2010) 3317.   DOI
54 Y. Guo, L. Wang, B. Zou, C. Rong, X. Ma, Y. Qu, Y. Li, Z. Wang, Bioresour. Technol. 102 (2011) 1947.   DOI
55 J.P. Paraknowitsch, A. Thomas, M. Antonietti, Chem. Mater. 21 (2009) 1170.   DOI
56 R.J. White, K. Tauer, M. Antonietti, M.-M. Titirici, J. Am. Chem. Soc. 132 (2011) 17360.