• Title/Summary/Keyword: $H_2S$ poisoning

Search Result 68, Processing Time 0.031 seconds

The performance of PEMFC after hydrogen sulfide poisoning under various operating conditions (황화수소 피독이 고분자전해질 막 연료전지의 성능에 미치는 영향)

  • Lee, Soo;Jin, Seok-Hwan;Kim, Sang-Myoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • Polymer electrolyte membrane fuel cell (PEMFC) performance degrades when hydrogen sulfide ($H_2S$) is present in the fuel hydrogen gas; this is referred to as $H_2S$ poisoning. This paper reveals $H_2S$ poisoning on PEMFC by measuring electrical performance of single cell FC under various operating conditions. The severity of $H_2S$ poisoning depended on $H_2S$ concentration under best operating conditions($65^{\circ}C$ of cell temperature and 100% of anode humidification). $H_2S$ adsorption occured on the surface of catalyst layer on MEA, but not on the gas diffusion layer(GDL) by analyzing SEM/EDX data. In addition, MEA poisoning by $H_2S$ was cumulative but reversible. After poisoning for less than 150 min, performance of PEMFC was recovered up to 80% by just inert nitrogen gas purging.

Sulfur Poisoning of Ni Anode as a Function of Operating Conditions in Solid Oxide Fuel Cells (고체산화물 연료전지의 운전 조건에 따른 니켈 전극 황 피독 현상)

  • Lee, Ho Seong;Lee, Hyun Mi;Lim, Hyung-Tae
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.893-899
    • /
    • 2018
  • In the present study, we investigated the sulfur poisoning of the Ni anode in solid oxide fuel cells (SOFCs) as a function of operating conditions. Anode supported cells were fabricated, and sulfur poising tests were conducted as a function of current density, $H_2S$ concentration and humidity in the anode gas. The voltage drop was significant under the higher current density (${\sim}714mA/cm^2$) condition, while it was much reduced under the lower current density (${\sim}389mA/cm^2$) condition, at 100 ppm of $H_2S$. A secondary voltage drop, which occurred only at the high current density, was attributed to Ni oxidation in the anode. Thus, operation at high current density with high $H_2S$ concentration may lead to permanent deterioration in the anode. The effect of water content (10%) on the sulfur poisoning was also investigated through a constant current test (${\sim}500mA/cm^2$) at 10 ppm of $H_2S$. The cell operating with 10% wet anode gas showed a much smaller initial voltage drop, in comparison with a dry anode gas. The present study indicates that operating conditions, such as gas humidity and current density, should be carefully taken into account, especially when fuel cells are operated with $H_2S$ containing fuel.

The performance of PEMFC during exposure to simultaneous sulfur impurity poisoning on cathode and anode (공기극과 연료극의 복합 황불순물에 의한 고분자 전해질막 연료전지의 성능에 미치는 영향)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.594-598
    • /
    • 2012
  • Polymer electrolyte membrane fuel cell(PEMFC) performance degrades seriously when sulfur dioxide and hydrogen sulfide are contaminated in the fuel gas at anode and air source at cathode, respectively. This paper reveals the effect of the combined sulfur impurity poisoning on both PEMFC cathode and anode parts through measuring electrical performance on single FC operated under 1 ppm to 10 ppm impurity gases. The severity of $SO_2$ and $H_2S$ poisoning depended on concentrations of impurity gases under optimum operating conditions($65^{\circ}C$ of cell temperature and 100 % relative humidity). Sulfur adsorption occured on the surface of Pt catalyst layer on MEA. In addition, MEA poisoning by impurity gases were cumulative. After four consecutive poisonings with 1, 3, 5 to 10 ppm, the fuel cell performance of PEMFC was decrease upto 0.54 V(76 %) from 0.71 V.

A Study on the Performance Recovery of $H_2S$ Poisoned PEMFC ($H_2S$ 피독 고분자 전해질막 연료전지의 연료극 성능 회복 연구)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • The recovery of a Pt anode in a PEMFC through 30 ppm $H_2S/H_2$ exposure was evaluated by using a cyclic voltametry(CV) scan. First, the PEMFC unit cell performanc loss was measured three times under an anode feeding with 30 ppm $H_2S/H_2$ for 1hr at $0.5A/cm^2$ of current density. The initial cell performance was $1.16A/cm^2$ at 0.6 V without $H_2S$ poisoning. After first poisoning step for 1hr the cell performance was decrease to $0.77A/cm^2$, and the further poisoning steps decreased up 0.57 V. Finally, the recovery of the cell performance of $H_2S$ poisoned PEMFC was achieved up to 90.3% by applying CV scan. Moreover, we also found out that another possible approach for over 80% recovery of the cell performance of $H_2S$ poisoned anode Pt catalyst layer was to just inject fresh hydrogen into the anode feeding stream.

A Study on Hydrogen Impurity Effect in Anode of Proton Exchange Membrane Fuel Cell on Various Concentration of CO and H2S (고분자전해질 연료전지 연료극의 일산화탄소 및 황화수소 농도에 따른 불순물영향에 관한 연구)

  • LEE, EUN-KYUNG;BAEK, JAE-HOON;LEE, JUNG-WOON;LEE, SEUNG-KUK;LEE, YEON-JAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.670-676
    • /
    • 2016
  • Hydrogen town in Republic of Korea was established in 2013. Hydrogen as a byproduct produced by various processes of factories is used in hydrogen town facilities. As cell performance is affected by contaminations in fuel gas, various standards about impurities of fuel have been determined by many countries. This study shows performance degradation of single cell with impurities concentrations. Traces of carbon monoxide (CO) and hydrogen sulfide ($H_2S$)can cause considerable cell performance losses. For comparing the performances by poisoning of CO, acceleration test, I-V curve, constant current are performed. Both the CO and $H_2S$ poisoning rate are a function of their concentration. With the higher concentrations the higher poisoning rates are observed. And, it was confirmed that, oxidation behavior and side reaction generation are not affected. Under the lower $H_2S$ concentration condition, the poisoning rate is much higher than that of CO because of its different adsorption intensity. It can be possible that the result of this study can be used for enacting regulation as a baseline data.

H2S Poisoning Effect and Recovery Methods of Polymer Electrolyte Membrane Fuel Cell (황화수소 피독이 고분자전해질 연료전지에 미치는 영향과 회복기법)

  • Chun, Byungdo;Kim, Junbom
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • The performance of polymer electrolyte membrane fuel cell (PEMFC) could be deteriorated when fuel contains contaminants such as carbon monoxide (CO) or hydrogen sulfide ($H_2S$). Generally, $H_2S$ is introduced in hydrogen by steam reforming of hydrocarbon which has mercaptan as odorant. $H_2S$ poisoning effect on PEMFC performance was examined on this study. Pure hydrogen injection, voltage cycling and water circulation methods were compared as performance recovery methods. The PEMFC performance was analyzed using electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Pure hydrogen injection and voltage cycling methods showed low recovery ratio, however, water circulation method showed high recovery ratio over 95%. Because anode was directly poisoned by $H_2S$, anode water circulation showed higher recovery ratio compared to the other methods. Water circulation method was developed to recover PEMFC performance from $H_2S$ poisoning. This method could contribute to PEMFC durability and commercialization.

The Performance Degradation of PEMFCs Fabricated with Different GDLs During Exposure to Simultaneous Sulfur Impurity Poisoning Condition (서로 다른 GDL을 이용한 고분자전해질 막 연료전지의 황불순물 복합피독에 의한 성능 저하)

  • Lee, Soo;Kim, Jae-Hyun;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.146-151
    • /
    • 2013
  • This paper reveals the performance decrease and recovery of PEMFC when the contaminated fuel gas and air source with sulfur impurities such as hydrogen sulfide and sulfur dioxide were simultaneously introduced to anode and cathode, respectively. Three different GDLs were fabricated with different carbon black and activated carbon to prevent an introduction of sulfur compound impurities into MEA. components. The severity of $SO_2$ and $H_2S$ poisoning was depended on concentrations(3 ppm - 10 ppm) of sulfur impurities. Especially, cell performance degradation rate was rapid when MEA fabricated with CN-2 GDL because it had little porosity on GDL surface. Moreover, the cell performance can be recovered up to 90%-95% only with neat hydrogen and fresh air feeding.. Conclusively, MEA fabricated with porous CN-1 GDL showed the best cell performance and recovery efficiency during exposure to poisoning condition by simultaneous sulfur impurities.

A Study on the H2 Oxidation over Pt/TiO2, SO2 Poisoning and Regeneration (Pt/TiO2의 HS 산화반응 및 SO2 피독과 재생 방안 연구)

  • Lee, Dong Yoon;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.731-736
    • /
    • 2019
  • In this article, Pt/TiO2 was manufactured in the form of powder and honeycomb, and the influence of SO2, which is a poisonous substance to catalyst, and regeneration method were investigated. The catalytic activity of Pt/TiO2 before and after the exposure to SO2 was also compared. The initial activity of Pt/TiO2 was proportional to the injected H2 concentration (1~5%). And the optimum temperature of the catalyst and conversion rate of H2 were 183 ℃ and 95%, respectively. It was confirmed that when exposing 2,800 ppm of SO2 to the powder and honeycomb Pt/TiO2, the performance of catalyst was not measurable and also 0.69% sulfur (S) remained on the catalyst surface. As a result of the cleaning and heat treatment for the poisoning catalyst, the activity of the powder catalyst exhibited a conversion rate of H2 greater than 96%. Whereas, the honeycomb catalyst showed a conversion rate of H2 greater than 95% when it was regenerated through the heat treatment of H2 or air atmosphere.

Effects of Vinegar and Lactic Acid on the Survival of Pathogens Causing Food Poisoning of Sliced Raw Fish Meat (식초와 젖산이 생선회 식중독 유래 병원성 세균의 생존에 미치는 영향)

  • 김영만;김경희
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.669-675
    • /
    • 2002
  • Introduction of sliced raw fish meat(SRFM) to fast food business has been considered seriously. However bacteria causing food poisoning should be controlled. Organic acids such as vinegar and lactic acid used in the sauce for SRFM were evaluated for their antibacterial activities. At low concentration levels of vinegar and lactic acid exerted strong antibacterial activities toward Vibriu sp.. In contrast, in case of Salmonella typhimurium and Escherichia coli O157:H7 low anitbacterial activities were observed even at relatively high concentrations. Minimum inhibitory concentrations(MIC) of vinegar for V. vulnificus, V. cholerae non-O1, V. parahaemolyticus, V. mimicus, S. typhimurium and E. coli O157:H7 were 16, 18, 16, 12, 26, and $20{\mu}\ell /m\ell, respertively. MIC of lactic acid for V. vilnificus, V. cholerae non-O1, V. parahaemolyticus, V. mimicus, S. typhimurium and E. coli O157:H7 were 20, 25, 25, 25, 40, and $35{\mu}\ell /m\ell, respectively. In case of vinegar bactericidal concentration upon 10 second contact for V. vulnificus, V. cholerae non-O1, V. parahaenolyticus, V. mimicus and E. coli O157:H7 were 8, 14, 10, 4, and 48%, respectively; however, even at 50% colony of S. typhimurium was observed. In case of lactic acid any colony was observed for V. vulnificus, V. cholerae non-O1, V. parahaemolyticus, V. mimicus, S. typhimurium and E. coli O157:H7 at the concentration of 2, 3, 4, 3, 14, and 17%, respectively. Vinegar and lactic acid of low concentration inhibited the growth of Vibrio sp., food poisoning pathogen in SRFM; in contrast, at high concentration these organic acids inhibited Salmonella sp. and Escherichia sp., food poisoning pathogen in other than SRFM.