DOI QR코드

DOI QR Code

Enhancement of high temperature cycling stability in high-nickel cathode materials with titanium doping

  • Song, Jun-Ho (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Bae, Joongho (School of Integrative Engineering, Chung-Ang University) ;
  • Lee, Ko-woon (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Lee, Ilbok (School of Integrative Engineering, Chung-Ang University) ;
  • Hwang, Keebum (School of Integrative Engineering, Chung-Ang University) ;
  • Cho, Woosuk (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Hahn, Sang June (Department of Physics, Chung-Ang University) ;
  • Yoon, Songhun (School of Integrative Engineering, Chung-Ang University)
  • 투고 : 2018.04.30
  • 심사 : 2018.07.26
  • 발행 : 2018.12.25

초록

Titanium doping is employed to enhance the structural strength of a high-Ni layered cathode material in lithium ion batteries during high temperature cycling. After Ti-doping, the external morphology remains similar, but the lattice parameters of the layered structure are slightly shifted toward larger values. With application of the prepared materials as cathodes in lithium-ion batteries, the initial capacities are similar but the cycling performance at $25^{\circ}C$ is enhanced by Ti-doping. During high temperature cycling at $60^{\circ}C$, furthermore, highly improved capacity retention is achieved with the Ti-doped material (95% of initial capacity at 50th cycles), while cycle fading is accelerated with the bare electrode. This enhancement is attributed to better retention of the compressive strength of the particles and retarded crack formation within the particles. In addition, impedance increase is reduced in the Ti-doped electrode, which is attributed to an improvement in the structural strength of the high-Ni cathode material with Ti-doping.

키워드

과제정보

연구 과제번호 : Technology development for life improvement of high-Ni composition cathodes at high temperature

연구 과제 주관 기관 : KETI, Korea Institute for Advancement of Technology (KIAT)

참고문헌

  1. S. Patoux, M.M. Doeff, Electrochem. Commun. 6 (2004) 767. https://doi.org/10.1016/j.elecom.2004.05.024
  2. Y.S. He, X.Z. Liao, Y. Jiang, Z.F. Ma, J. Power Sources 163 (2007) 1053. https://doi.org/10.1016/j.jpowsour.2006.09.061
  3. T. Ohzuku, Y. Makimura, Chem. Lett. 30 (2001) 642. https://doi.org/10.1246/cl.2001.642
  4. L. Wang, J. Li, W. Pu, C. Wan, C. Jiang, X. He, J. Solid State Electrochem.13 (2009) 1157. https://doi.org/10.1007/s10008-008-0671-7
  5. T.H. Cho, S.M. Park, T. Hirai, Y. Hideshima, M. Yoshio, J. Power Sources 142 (2005) 306. https://doi.org/10.1016/j.jpowsour.2004.10.016
  6. B.J. Hwang, Y.W. Tsai, D. Carlier, G. Ceder, Chem. Mater. 15 (2003) 3676. https://doi.org/10.1021/cm030299v
  7. Z. Lu, J.R. Dahn, J. Electrochem. Soc. 148 (2001) A237. https://doi.org/10.1149/1.1350016
  8. D.P. Abraham, R.D. Twesten, M. Balasubramanian, U. Petrov, J. McBreen, K. Amine, Electrochem. Commun. 4 (2002) 620. https://doi.org/10.1016/S1388-2481(02)00388-0
  9. S. Jouanneau, W. Bahmet, K.W. Eberman, L.J. Krause, J.R. Dahna, J. Electrochem. Soc. 151 (2004) A1789. https://doi.org/10.1149/1.1799411
  10. D.C. Li, T. Muta, L.Q. Zhang, M. Yoshio, H. Noguchi, J. Power Sources 132 (2004) 150. https://doi.org/10.1016/j.jpowsour.2004.01.016
  11. Y. Hiramatsu, Y. Oka, H. Kiyama, J. Min. Inst. Jpn. 81 (1965) 1024.
  12. S.-H. Han, J.H. Song, T. Yim, Y.-J. Kim, J.-S. Yu, S. Yoon, J. Electrochem. Soc. 163 (2016) A748. https://doi.org/10.1149/2.1011605jes
  13. J.H. Song, Y.J. Kim, J. Kim, S.M. Oh, S. Yoon, Bull. Korean Chem. Soc. 37 (2016) 1298. https://doi.org/10.1002/bkcs.10858
  14. A. Gasmi, M. Boudard, S. Zemni, F. Hippert, M. Oumezzine, J. Phys. D Appl. Phys. 22 (2009) 225408.
  15. Ji-Hyun Kim, Min-Jung Jung, Min-Ji Kim, Young-Seak Lee, J. Ind. Eng. Chem. 61 (2018) 368. https://doi.org/10.1016/j.jiec.2017.12.036
  16. H. Seo, S. Na, B. Lee, T. Yim, S.H. Oh, J. Ind. Eng.Chem. 64 (2018) 311. https://doi.org/10.1016/j.jiec.2018.03.029

피인용 문헌

  1. Dual-modification of Gd2O3 on the high-voltage electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode materials via the solid-state method vol.24, pp.4, 2018, https://doi.org/10.1007/s10008-020-04523-3
  2. Unanticipated Mechanism of the Trimethylsilyl Motif in Electrolyte Additives on Nickel-Rich Cathodes in Lithium-Ion Batteries vol.12, pp.39, 2018, https://doi.org/10.1021/acsami.0c11996
  3. Enhancing high-voltage performance of LiNi0.8Co0.1Mn0.1O2 by coating with NASICON fast ionic conductor Li1.5Al0.5Zr1.5(PO vol.849, pp.None, 2018, https://doi.org/10.1016/j.jallcom.2020.156467
  4. Titanium-Doped Nickel-Rich Layered LiNi0.8Co0.2O2 as High-Performance Cathode Material for Lithium-Ion Batteries vol.50, pp.12, 2018, https://doi.org/10.1007/s11664-021-09258-z
  5. A review of nickel-rich layered oxide cathodes: synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects vol.305, pp.None, 2018, https://doi.org/10.1016/j.apenergy.2021.117849