DOI QR코드

DOI QR Code

The Expectation of Medical Artificial Intelligence of Students Majoring in Health in Convergence Era

융복합 시대에 일부 보건계열 전공 학생들의 의료용 인공지능에 대한 기대도

  • Received : 2018.05.30
  • Accepted : 2018.09.20
  • Published : 2018.09.28

Abstract

The purpose of this study was to investigate the expectation toward medical artificial intelligence(AI) of students in majoring health, and to utilize it as a basic data for widespread use of medical AI for 500 students majoring in health science at Cheonan city. The awareness of AI was 18.6%, the reliability of AI was 24.8%, and agreement to use of medical AI was 38%. Also, the higher the awareness and reliability of AI were, the higher the expectation of AI was. As a result, education on medical AI in the major field should be a cornerstone for the development of an effective healthcare environment utilizing medical AI by raising awareness, reliability and expectation of AI.

본 연구는 보건계열 전공 학생들의 의료용 인공지능에 대한 기대도를 조사하여 의료용 인공지능의 보건의료영역에서의 전반적 활용을 위한 기초자료로 이용하고자 충청남도 천안시에 소재한 일개 대학교 보건계열 전공 대학생들 500명을 대상으로 인공지능에 대한 인지도와 의료용 인공지능에 대한 신뢰도 및 활용에 대한 기대도를 조사하였다. 의료용 인공지능에 대한 인지도는 대상자의 18.6%가 높다고 응답하였고, 의료용 인공지능에 대해 신뢰도는 대상자의 24.8%가 높다고 응답하였으며 의료용 인공지능의 활용에 대한 찬성은 대상자의 38%가 그렇다고 응답하였다. 또한, 인공지능에 대한 인지도와 신뢰도가 높을수록 인공지능의 보건의료 활용에 대한 기대도도 높게 조사되었다. 이상의 결과로 볼 때 전공과정에서의 의료용 인공지능에 대한 교육은 인공지능에 대한 인지도와 신뢰도 및 기대도를 제고시켜 의료용 인공지능을 활용하는 효율적인 보건의료 환경 조성에 초석이 될 것으로 사료된다.

Keywords

References

  1. V. Khosla. (2012). Do We Need Doctors or Algorithms?. TechCrunch. http://techcrunch.com/2012/01/10/doctors-or-algorithms/
  2. Y .S. Jeong, (2017). Subnet Generation Scheme based on Deep Learing for Healthcare Information Gathering, Journal of Digital Convergence, 15(3), 221-228. DOI: 10.14400/JDC.2017.15.3.221
  3. Y. A. Ahn & H. J. Cho. (2017). Hospital System Model for Personalized Medical Service. Journal of Korea Convergence Society, 8(12), 77-84. DOI: 10.15207/JKCS.2017.8.12..077
  4. M. J. Lee & H. K.(2017). Kang. Effects of Mobile based-Healthcare Service using Human Coaching to the Self-care of Diabetes.Journal of Convergenc for Information Technology, 7(4), 53-60. DOI : 10.22156/CS4SMB.2017.7.4.053
  5. K. Y. Lee & J. Kim. (2016). Artificial Intelligence Technology Trends and IBM Watson References in the Medical Field. Korean Medical Education Review, 18(2), 51-57. DOI : 10.17496/ kmer.2016.18.2.51
  6. S. Y. Mun, Y. M. Yun & H. C. Kim. (2018). Healthcare Providers' Opinions on Digital Healthcare Services. Journal of Health Informatics and Statistics, 43(1),54-63, DOI : 10.21032/jhis.2018.43.1. 54
  7. J. Minn, S. Kim, Y. Park & Y. W. Sohn. (2018). A Comparative Study of Potential Job Candidates' Perceptions of an AI Recruiter and a Human Recruiter, 9(5), 191-202. DOI: 10.15207/JKCS.2018.9.5.191
  8. J. H. Choi, S. H. Kim, G.S. Bok, H.C. Kim & D. S. Kim. (2017). A Study on the trend of medical artificial intelligence and the recognition of radiological technologist. The Korean society of radiological imaging technology, 2017(1), 137-145.
  9. S. J. Kim, Y. S. Kim, J. H. Kim, J. H. Lee & K. E. Chang, (2018). A Study on the Development of Convergence Education Program for workers in Health and Medical Industry in preparation for the forth industrial revolution. Journal of Korea Convergence Society, 9(5), 43-52. DOI: 10.15207/JKCS. 2018.9.5.043
  10. C. Krittanawong. (2018). The rise of artificial intelligence and the uncertain future for physicians. European Journal of Internal Medicine, 48(1), 13-14. DOI : 10.1016/j.ejim.2017.06.017
  11. H. Martin, H. Ansgar & T. Anke (2017). Attitudes Toward e-Health: The Otolaryngologists' Point of View. Telemedicine and e-Health, DOI : 10.1089/tmj.2017.0158
  12. U. Oberg, C. J. Orre & A. Hornsten. (2017). Swedish primary healthcare nurses' perceptions of using digital eHealth services in support of patient self‐management. Scandinavian Journal Caring Sciences, DOI : 10.1111/scs.12534
  13. A. S. Epstein, M. G. Zauderer & M. G. Kris. (2014). Next steps for IBM Watson Oncology: Scalability to additional malignancies. Journal of Clinical Oncology. 32(15), 6618-6618. DOI : 10.1200/ jco.2014. 32.15
  14. M. G. Zauderer, A. Gucalp & M. G. Kris. (2014). Piloting IBM Watson Oncology within Memorial Sloan Kettering's regional network.. Journal of Clinical Oncology, 32(15). DOI: 10.1200/jco.2014.32.15
  15. J. M. Kim (2017). Study on Intention and Attitude of Using Artificial Intelligence Technology in Healthcare, Journal of Convergence for Information Technology, 53-60. DOI : 10.22156/CS4SMB.2017.7.4.053
  16. P. Khumrin, A. Ryan & K. Verspoor. (2017). Diagnostic Machine Learning Models for Acute Abdominal Pain: Towards an e-Learning Tool for Medical Students. Studies in Health Technology and Informatics, 245, 447-451.
  17. D. D. Luxton. (2014). Recommendations for the ethical use and design of artificial intelligent care providers. Artificial intelligence in medicine, 62(1), 1-10. DOI : 10.1016/j.artmed. 2014.06.004
  18. S. C. Johnston. (2018). Anticipating and Training the Physician of the Future: The Importance of Caring in an Age of Artificial Intelligence. Academic medicine: journal of the Association of American Medical Colleges, DOI: 10.1097/ACM.0000000000002175
  19. J. H. JEONG. (2017). Watson is treating cancer cases. Koreajoongangdaily. http://korea-joongangdaily.joins.com
  20. I. Arel, D.C. Rose & T.P. Karnowski (2010). Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE computational intelligence magazine, 5(4), 13-18. DOI : 10.1109/MCI.2010.938364
  21. D. Y. Eom, H. J. Lee & H. A. Zoo. (2018). Medical Information Privacy Concerns in the Use of the EHR System: A Grounded Theory Approach. Journal of Digital Convergence, 16(1), 217-229. DOI: 10.14400/JDC.2018.16.1.217
  22. A. Appari & M. E. Johnson. (2010). Information security and privacy in healthcare: current state of research. International journal of Internet and enterprise management, 6(4), 279-314. DOI: 10.1504/IJIEM.2010.035624