DOI QR코드

DOI QR Code

블록체인 합의 알고리즘과 공격 분석

Analysis on Consensus Algorithms of Blockchain and Attacks

  • 투고 : 2018.08.10
  • 심사 : 2018.09.20
  • 발행 : 2018.09.28

초록

블록체인은 중앙 집중화된 시스템이 아닌 분산화 된 시스템을 구현하는 데에 사용되는 기술로써, 익명성, 투명성 등을 특징으로 한다. 그러나 아직 블록체인을 상용화하기에는 고질적인 공격들이 존재한다. 본 논문에서는 이러한 블록체인을 구현하기 위해서 존재하는 대표적인 합의 알고리즘으로써 Bitcoin, Algorand, 그리고 IOTA를 소개하고, 각각의 합의 알고리즘들이 어떠한 방법으로 블록체인의 고질적인 공격들인 이중 지불 공격이나 시빌 공격을 해결하는지, 혹은 해결하지 못하고 있다면 어떤 방법으로 해결할 수 있는지를 소개한다. 뿐만 아니라 기존의 고질적인 공격이 가능한 새로운 시나리오를 제안한다.

The blockchain is the technique which is used in decentralized system instead of centralized system. Its characteristics are anonymous and transparency. However, there are still some traditional attacks. In this paper, we introduced some of the famous consensus algorithm with blockchain: Bitcoin, Algorand, and IOTA. Also, this paper talked about how each consensus algorithm tried to solve those traditional attacks such as double spending attack or sybil attack. Furthermore, if the consensus algorithm does not consider those attacks yet, then the author would introduce additional methods to solve those attacks. Furthermore, this paper proposed the new scenario that can make classical attacks be happened.

키워드

참고문헌

  1. J. R. Douceur.(2002). The Sybil attack. In Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS'02), Cambridge, MA.
  2. E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. (2015). Eclipse attacks on Bitcoin's peer-to-peer network. In Proceedings of the 24th Usenix Security Symposium, Washington, DC. 129-144.
  3. S. Nakamoto. (2008) . Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
  4. C. Decker and R. Wattenhofer. (2013). Information propagation in the Bitcoin network. In Proceedings of the 13th IEEE International Conference on Peer-to-Peer Computing.
  5. I. Eyal and E. G. Sirer. (2014). Majority is not enough: Bitcoin mining is vulnerable. In Proceedings of the 2013 Financial Cryptography and Data Security Conference.
  6. D. Mazieres. (2014). The Stellar consensus protocol: A federated model for internet-level consensus. https://www.stellar.org/papers/stellarconsensus-protocol.pdf
  7. Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. (2017). "Algorand: Scaling byzantine agreements for cryptocurrencies," in Proeedings. 26th ACM Symp. Operating Syst. Principles, 51-68.
  8. M. Castro and B. Liskov. (1999). "Practical byzantine fault tolerance," in Proceeding. 3rd USENIX Symp. Operating Syst. Des. Implementation, 173-186.
  9. Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim, (2017). "Be selfish and avoid dilemmas: Fork after withholding (faw) attacks on bitcoin," in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, ser. CCS '17. ACM, 195-209.
  10. S. Bag, S. Ruj, and K. Sakurai, (2016). "Bitcoin block withholding attack :Analysis and mitigation," IEEE Transactions on Information Forensics and Security, 99, 1-12.
  11. G. Karame, E. Androulaki, and S. Capkun. Double- Spending (2012). Fast Payments in Bitcoin. In Proceedings of ACM CCS 2012.
  12. S, Popov, The Tangle, https://iotatoken.com/IOTA_Whitepaper.pdf
  13. bitcoinj. Working with micropayment channels. https://bitcoinj.github.io/working-with-micropayments
  14. J. Chen and S. Micali. (2017). Algoland. Technical report, URL http://arxiv.org/abs/1607.01341
  15. S. H. Hong & S. H. Park (2017). The Research on Blockchain-based Secure IoT Authentication. The Korean Journal of The Korea Convergence Society, 8(11), 57-62.