DOI QR코드

DOI QR Code

Ultrasonic Vibration and Rheocasting for Refinement of Mg-Zn-Y Alloy Reinforced with LPSO Structure

  • Lu, Shulin (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology) ;
  • Yang, Xiong (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology) ;
  • Hao, Liangyan (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology) ;
  • Wu, Shusen (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology) ;
  • Fang, Xiaogang (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology) ;
  • Wang, Jing (State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology)
  • Received : 2017.11.25
  • Accepted : 2018.04.11
  • Published : 2018.11.20

Abstract

In this work, ultrasonic vibration (UV) and rheo-squeeze casting was first applied on the Mg alloy reinforced with long period stacking ordered (LPSO) structure. The semisolid slurry of Mg-Zn-Y alloy was prepared by UV and processed by rheosqueeze casting in succession. The effects of UV, Zr addition and squeeze pressure on microstructure of semisolid Mg-Zn-Y alloy were studied. The results revealed that the synergic effect of UV and Zr addition generated a finer microstructure than either one alone when preparing the slurries. Rheo-squeeze casting could significantly refine the LPSO structure and ${\alpha}-Mg$ matrix in $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy without changing the phase compositions or the type of LPSO structure. When the squeeze pressure increased from 0 to 400 MPa, the block LPSO structure was completely eliminated and the average thickness of LPSO structure decreased from 9.8 to $4.3{\mu}m$. Under 400 MPa squeeze pressure, the tensile strength and elongation of the rheocast $Mg_{96.9}Zn_1Y_2Zr_{0.1}$ alloy reached the maximum values, which were 234 MPa and 17.6%, respectively, due to its fine ${\alpha}-Mg$ matrix (${\alpha}1-Mg$ and ${\alpha}2-Mg$ grains) and LPSO structure.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi, J. Koike, J. Mater. Res. 16, 1894 (2001) https://doi.org/10.1557/JMR.2001.0260
  2. M. Ishida, S. Yoshioka, T. Yamamoto, K. Yasuda, S. Matsumura, Microscopy 63, 25 (2014)
  3. T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi, Scr. Mater. 51, 107 (2004) https://doi.org/10.1016/j.scriptamat.2004.04.003
  4. M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, Y. Kawamura, Acta Mater. 55, 6798 (2007) https://doi.org/10.1016/j.actamat.2007.08.033
  5. K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Acta Mater. 58, 6282 (2010) https://doi.org/10.1016/j.actamat.2010.07.050
  6. B. Chen, X. Li, C. Lu, D. Lin, Met. Mater. Int. 20, 489 (2014) https://doi.org/10.1007/s12540-014-3012-7
  7. T. Ito, T. Inazawa, M. Yamasaki, Y. Kawamura, M. Hirohashi, Mater. Sci. Eng., A 560, 216 (2013) https://doi.org/10.1016/j.msea.2012.09.059
  8. X.W. Li, F.Y. Zheng, Y.J. Wu, L.M. Peng, Y. Zhang, D.L. Lin, W.J. Ding, Mater. Lett. 113, 206 (2013) https://doi.org/10.1016/j.matlet.2013.09.054
  9. Q. Yang, B.L. Xiao, D. Wang, M.Y. Zheng, K. Wu, Z.Y. Ma, J. Alloy Compd. 581, 585 (2013) https://doi.org/10.1016/j.jallcom.2013.07.065
  10. G. Garces, M.A. Muñoz-Morris, D.G. Morris, P. Perez, P. Adeva, Mater. Sci. Eng., A 614, 96 (2014)
  11. J.S. Zhang, W.B. Zhang, X.Q. Ruan, L.P. Bian, W.L. Cheng, H.X. Wang, C.X. Xu, Mater. Sci. Eng., A 560, 847 (2013)
  12. D. Li, J. Zhang, Z. Que, C. Xu, X. Niu, Mater. Lett. 109, 46 (2013) https://doi.org/10.1016/j.matlet.2013.06.112
  13. J. Zhang, C. Chen, Z. Que, W. Cheng, J. Xu, J. Kang, Mater. Sci. Eng., A 552, 81 (2012)
  14. X.H. Du, G.S. Duan, M. Hong, D.P. Wang, B.L. Wu, Y.D. Zhang, C. Esling, Mater. Lett. 122, 312 (2014) https://doi.org/10.1016/j.matlet.2014.02.056
  15. S. Huang, J. Wang, F. Hou, Y. Li, F. Pan, Mater. Lett. 137, 143 (2014) https://doi.org/10.1016/j.matlet.2014.08.145
  16. D. Gao, Z. Li, Q. Han, Q. Zhai, Mater. Sci. Eng., A 502, 2 (2009)
  17. M. Khosro Aghayani, B. Niroumand, J. Alloy Compd. 509, 114 (2011) https://doi.org/10.1016/j.jallcom.2010.08.139
  18. K.B. Nie, X.J. Wang, K. Wu, M.Y. Zheng, X.S. Hu, Mater. Sci. Eng., A 528, 7484 (2011)
  19. X. Fang, S. Wu, S. Lü, J. Wang, X. Yang, Mater. Sci. Eng., A 679, 372 (2017)
  20. W. Dai, S. Wu, S. Lu, C. Lin, Mater. Sci. Eng., A 538, 320 (2012)
  21. S. Lu, S. Wu, L. Wan, P. An, Metall. Mater. Trans. A 44, 2735 (2013) https://doi.org/10.1007/s11661-013-1637-7
  22. S. Lu, S. Wu, W. Dai, C. Lin, P. An, J. Mater. Proc. Technol. 212, 1281 (2012) https://doi.org/10.1016/j.jmatprotec.2012.01.018
  23. C. Lin, S. Wu, S. Lü, P. An, L. Wan, J. Alloy Compd. 568, 42 (2013) https://doi.org/10.1016/j.jallcom.2013.03.089
  24. G. Cao, J. Kobliska, H. Konishi, X. Li, Metall. Mater. Trans. A 39, 880 (2008) https://doi.org/10.1007/s11661-007-9453-6
  25. G.I. Eskin, Ultrasonic Treatment Of Light Alloy Melts, 2nd edn. (Gordon and Breach Science, Amsterdam, 1998), pp. 65-103
  26. Z.K. Peng, X.M. Zhang, J.M. Chen, Y. Xiao, H. Jiang, Mater. Sci. Technol. 21, 722 (2005) https://doi.org/10.1179/174328405X43153
  27. H. Okamoto, Phase Diagrams of Dilute Binary Alloys (Materials Park, ASM International, 2002), p. 170
  28. Y.C. Lee, A.K. Dahle, D.H. StJohn, Metall. Mater. Trans. A 31, 2895 (2000) https://doi.org/10.1007/BF02830349
  29. Z. Zhu, S. Wu, S. Lü, W. Dai, L. Wan, L. Liu, Chin. J. Nonferrous Met. 21, 325 (2011)
  30. Y. Zhu, A.J. Morton, J.F. Nie, Acta Mater. 58, 2936 (2010) https://doi.org/10.1016/j.actamat.2010.01.022
  31. S. Wu, X. Wu, Z. Hui, Acta Mater. 52, 3519 (2004) https://doi.org/10.1016/j.actamat.2004.04.005
  32. H. Hu, J. Mater. Sci. 33, 1579 (1998) https://doi.org/10.1023/A:1017567821209
  33. T.M. Yue, G.A. Chadwick, J. Mater. Process. Technol. 58, 302 (1996) https://doi.org/10.1016/0924-0136(95)02148-5
  34. J.H. Lee, H.S. Kim, C.W. Won, B. Cantor, Mater. Sci. Eng., A 338, 182 (2002)

Cited by

  1. Effects of Mg-Zn-Y quasicrystal addition on the microstructures, mechanical performances and corrosion behaviors of as-cast AM60 magnesium alloy vol.5, pp.10, 2018, https://doi.org/10.1088/2053-1591/aada70
  2. Effects of Shape and Orientation of MnS on Charpy Impact and Bending Properties in Hot-Press-Forming (HPF) Steels vol.50, pp.4, 2018, https://doi.org/10.1007/s11661-019-05128-w
  3. Effect of Multipass Friction Stir Processing on Surface Corrosion Resistance and Wear Resistance of ZK60 Alloy vol.25, pp.5, 2018, https://doi.org/10.1007/s12540-019-00268-5
  4. Effect of Different-Source Ultrasonic Treatment on Intergranular Phase and Mechanical Properties of Large-Scale AlCu Ingots vol.71, pp.12, 2018, https://doi.org/10.1007/s11837-019-03781-5
  5. Microstructure and Mechanical Properties of Mg-8Y-2Ho-2Zn Alloy with Long Period Stacking Ordered Phase vol.27, pp.6, 2018, https://doi.org/10.1007/s12540-019-00587-7