DOI QR코드

DOI QR Code

A Case Report of Severe Hypocalcemia and Hypothyroidism after Tyrosine Kinase Inhibitor Treatment

티로신키나아제 억제제 치료 후 발생한 중증 저칼슘혈증 및 갑상선기능저하증 1례

  • Lee, Eun Kyung (Division of Endocrinology, Center for Thyroid Cancer, National Cancer Center) ;
  • Lee, Young Ki (Division of Endocrinology, Center for Thyroid Cancer, National Cancer Center) ;
  • Hwangbo, Yul (Division of Endocrinology, Center for Thyroid Cancer, National Cancer Center) ;
  • Lee, You Jin (Division of Endocrinology, Center for Thyroid Cancer, National Cancer Center)
  • 이은경 (국립암센터 갑상선암센터 내분비내과) ;
  • 이영기 (국립암센터 갑상선암센터 내분비내과) ;
  • 황보율 (국립암센터 갑상선암센터 내분비내과) ;
  • 이유진 (국립암센터 갑상선암센터 내분비내과)
  • Received : 2018.10.19
  • Accepted : 2018.11.26
  • Published : 2018.11.30

Abstract

After introducing tyrosine kinase inhibitors (TKIs) as promising treatments for radioactive iodine refractory advanced thyroid cancer patients, we more often meet patients with TKI-related hormone and electrolyte imbalances in clinics. Hypocalcemia associated with TKI is associated with an imbalance in calcium-vitamin D metabolism. TKI-related hypothyroidism is related to the metabolic rate of thyroid hormones. The two side effects usually occur in the early stages of TKI treatment, and if the imbalance is corrected appropriately, the effects are minor, but in severe cases, the TKI should be discontinued. The authors reported a case of severe hypocalcemia and thyroid dysfunction after TKI treatment. A 56-year-old man suffered from symptomatic hypocalcemia during TKI treatment, which was resolved after he stopped taking the TKI medication. Although calcium and vitamin D replacement have increased, hypocalcemia was recurred and TKI treatments have been permanently stopped due to serious weight loss in grade 3. After the interruption, his calcium levels normalized.

Keywords

Acknowledgement

Supported by : National Cancer Center

References

  1. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodinerefractory thyroid cancer. N Engl J Med 2015;372(7):621-30. https://doi.org/10.1056/NEJMoa1406470
  2. Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014;384(9940):319-28. https://doi.org/10.1016/S0140-6736(14)60421-9
  3. Kawalec P, Malinowska-Lipien I, Brzostek T, Kozka M. Lenvatinib for the treatment of radioiodine-refractory differentiated thyroid carcinoma: a systematic review and indirect comparison with sorafenib. Expert Rev Anticancer Ther 2016;16(12):1303-9. https://doi.org/10.1080/14737140.2016.1247697
  4. Yi KH, Lee EK, Kang HC, Koh Y, Kim SW, Kim IJ, et al. 2016 Revised Korean Thyroid Association Management Guidelines for patients with thyroid nodules and thyroid cancer. Int J Thyroidol 2016;9(2):59-126. https://doi.org/10.11106/ijt.2016.9.2.59
  5. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26(1):1-133. https://doi.org/10.1089/thy.2015.0020
  6. Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, Eisen T, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 2015;16(15):1473-82. https://doi.org/10.1016/S1470-2045(15)00290-9
  7. Dy GK, Adjei AA. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J Clin 2013;63(4):249-79. https://doi.org/10.3322/caac.21184
  8. Puzziello A, Rosato L, Innaro N, Orlando G, Avenia N, Perigli G, et al. Hypocalcemia following thyroid surgery: incidence and risk factors. A longitudinal multicenter study comprising 2,631 patients. Endocrine 2014;47(2):537-42. https://doi.org/10.1007/s12020-014-0209-y
  9. Seong JY, Lee CR, Kim MJ, Kim TH, Lee SG, Choi JB, et al. Risk factors of postoperative hypocalcemia after total thyroidectomy of papillary thyroid carcinoma patients. Korean J Endocr Surg 2016;16(3):70-8. https://doi.org/10.16956/kjes.2016.16.3.70
  10. Eismontas V, Slepavicius A, Janusonis V, Zeromskas P, Beisa V, Strupas K, et al. Predictors of postoperative hypocalcemia occurring after a total thyroidectomy: results of prospective multicenter study. BMC Surg 2018;18(1):55. https://doi.org/10.1186/s12893-018-0387-2
  11. Roh JL, Park JY, Park CI. Prevention of postoperative hypocalcemia with routine oral calcium and vitamin D supplements in patients with differentiated papillary thyroid carcinoma undergoing total thyroidectomy plus central neck dissection. Cancer 2009;115(2):251-8. https://doi.org/10.1002/cncr.24027
  12. Bellini E, Pia A, Brizzi MP, Tampellini M, Torta M, Terzolo M, et al. Sorafenib may induce hypophosphatemia through a fibroblast growth factor-23 (FGF23)-independent mechanism. Ann Oncol 2011;22(4):988-90.
  13. Mir O, Coriat R, Boudou-Rouquette P, Durand JP, Goldwasser F. Sorafenib-induced diarrhea and hypophosphatemia: mechanisms and therapeutic implications. Ann Oncol 2012;23(1):280-1. https://doi.org/10.1093/annonc/mdr525
  14. Phillip V, Zahel T, Bartl K, Rasch S, Ebert O, Schmid RM, et al. Influence of Sorafenib and Bevacizumab on pancreatic volume - A monocentric CT based analysis. Pancreatology 2016;16(4):621-4. https://doi.org/10.1016/j.pan.2016.02.010
  15. Porta C, Cosmai L, Gallieni M, Pedrazzoli P, Malberti F. Renal effects of targeted anticancer therapies. Nat Rev Nephrol 2015;11(6):354-70. https://doi.org/10.1038/nrneph.2015.15
  16. Deininger MW, O'Brien SG, Ford JM, Druker BJ. Practical management of patients with chronic myeloid leukemia receiving imatinib. J Clin Oncol 2003;21(8):1637-47. https://doi.org/10.1200/JCO.2003.11.143
  17. Worden F, Fassnacht M, Shi Y, Hadjieva T, Bonichon F, Gao M, et al. Safety and tolerability of sorafenib in patients with radioiodine-refractory thyroid cancer. Endocr Relat Cancer 2015;22(6):877-87. https://doi.org/10.1530/ERC-15-0252
  18. Wong E, Rosen LS, Mulay M, Vanvugt A, Dinolfo M, Tomoda C, et al. Sunitinib induces hypothyroidism in advanced cancer patients and may inhibit thyroid peroxidase activity. Thyroid 2007;17(4):351-5. https://doi.org/10.1089/thy.2006.0308
  19. Abdulrahman RM, Verloop H, Hoftijzer H, Verburg E, Hovens GC, Corssmit EP, et al. Sorafenib-induced hypothyroidism is associated with increased type 3 deiodination. J Clin Endocrinol Metab 2010;95(8):3758-62. https://doi.org/10.1210/jc.2009-2507
  20. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR, et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 2006;290(2):H560-76. https://doi.org/10.1152/ajpheart.00133.2005
  21. Jean GW, Mani RM, Jaffry A, Khan SA. Toxic effects of sorafenib in patients with differentiated thyroid carcinoma compared with other cancers. JAMA Oncol 2016;2(4):529-34. https://doi.org/10.1001/jamaoncol.2015.5927
  22. Verloop H, Smit JW, Dekkers OM. Sorafenib therapy decreases the clearance of thyrotropin. Eur J Endocrinol 2013;168(2):163-7. https://doi.org/10.1530/EJE-12-0828
  23. Schmidinger M, Vogl UM, Bojic M, Lamm W, Heinzl H, Haitel A, et al. Hypothyroidism in patients with renal cell carcinoma: blessing or curse? Cancer 2011;117(3):534-44. https://doi.org/10.1002/cncr.25422