DOI QR코드

DOI QR Code

A continuous-flow and on-site mesocosm for ocean acidification experiments on benthic organisms

  • Kim, Ju-Hyoung (Faculty of Marine Applied Biosciences, Kunsan National University) ;
  • Kang, Eun Ju (Research Institute for Basic Science, Chonnam National University) ;
  • Kim, Keunyong (Research Institute for Basic Science, Chonnam National University) ;
  • Kim, Kwang Young (Department of Oceanography, College of Natural Sciences, Chonnam National University)
  • 투고 : 2018.08.05
  • 심사 : 2018.11.10
  • 발행 : 2018.12.15

초록

Mesocosm experiments conducted for ecological purposes have become increasingly popular because they can provide a holistic understanding of the biological complexities associated with natural systems. This paper describes a new outdoor mesocosm designed for $CO_2$ perturbation experiments of benthos. Manipulated the carbonate chemistry in a continuous flow-through system can be parallelized with diurnal changes, while irradiance, temperature, and nutrients can vary according to the local environment. A target hydrogen ion activity (pH) of seawater was sufficiently stabilized and maintained within 4 h after dilution, which was initiated by the ratio of $CO_2$-saturated seawater to ambient seawater. Specifically, pH and $CO_2$ partial pressure ($pCO_2$) levels gradually varied from 8.05-7.28 and $375-2,691{\mu}atm$, respectively, over a range of dilution ratios. This mesocosm can successfully manipulate the pH and $pCO_2$ of seawater, and it demonstrates suitability for ocean acidification experiments on benthic communities.

키워드

참고문헌

  1. Alexandre, A., Silva, J., Buapet, P., Bjork, M. & Santos, R. 2012. Effects of $CO_2$ enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii. Ecol. Evol. 2:2625-2635. https://doi.org/10.1002/ece3.333
  2. Andersson, A. J., Kuffner, I. B., Mackenzie, F. T., Jokiel, P. L., Rodgers, K. S. & Tan, A. 2009. Net loss of $CaCO_3$ from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6:1811-1823.
  3. Barry, J. P., Hall-Spencer, J. M. & Tyrrell, T. 2010. In situ perturbation experiments: natural venting sites, spatial/temporal gradients in ocean pH, manipulative in situ p($CO_2$) perturbations. In Riebesell, U., Fabry, V. J. & Gattuso, J. -P. (Eds.) Guide for Best Practices in Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, pp. 123-136.
  4. Burrell, R. B., Keppel, A. G., Clark, V. M. & Breitburg, D. L. 2015. An automated monitoring and control system for flow-through co-cycling hypoxia and pH experiments. Limnol. Oceanogr. Methods 14:168-185.
  5. Campbell, J. E. & Fourqurean, J. W. 2011. Novel methodology for in situ carbon dioxide enrichment of benthic ecosystems. Limnol. Oceanogr. Methods 9:97-109. https://doi.org/10.4319/lom.2011.9.97
  6. Dickson, A. G. 1993. The measurement of sea water pH. Mar. Chem. 44:131-142. https://doi.org/10.1016/0304-4203(93)90198-W
  7. Dickson, A. G., Sabine, C. L. & Christian, J. R. 2007. Guide to best practices for ocean $CO_2$ measurements. PICES Special Publication 3. North Pacific Marine Science Organization, Sydney, 191 pp.
  8. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. 2009. Ocean acidification: the other $CO_2$ problem. Annu. Rev. Mar. Sci. 1:169-192. https://doi.org/10.1146/annurev.marine.010908.163834
  9. Duarte, G., Calderon, E. N., Pereira, C. M., Marangoni, L. F. B., Santos, H. F., Peixoto, R. S., Bianchini, A. & Castro, C. B. 2015. A novel marine mesocosm facility to study global warming, water quality and ocean acidification. Ecol. Evol. 5:4555-4566. https://doi.org/10.1002/ece3.1670
  10. Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9:3917-3930.
  11. Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D. & Buia, M. -C. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96-99. https://doi.org/10.1038/nature07051
  12. Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C. & Martz, T. R. 2011. High-frequency dynamics of ocean pH: a multi ecosystem comparison. PLoS ONE 6:e28983. https://doi.org/10.1371/journal.pone.0028983
  13. Jeong, H. J., Lee, K., Yoo, Y. D., Kim, J. -M., Kim, T. H., Kim, M., Kim, J. -H. & Kim, K. Y. 2016. Reduction in $CO_2$ uptake rates of red tide dinoflagellates due to mixotrophy. Algae 31:351-362. https://doi.org/10.4490/algae.2016.31.11.17
  14. Jiang, Z. J., Huang, X. -P. & Zhang, J. -P. 2010. Effects of $CO_2$ enrichment of photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. J. Integr. Plant Biol. 52:904-913. https://doi.org/10.1111/j.1744-7909.2010.00991.x
  15. Jiang, Z. -P., Huang, J. -C., Dai, M., Kao, S. J., Hydes, D. J., Chou, W. -C. & Jan, S. 2011. Short-term dynamics of oxygen and carbon in productive nearshore shallow seawater systems off Taiwan: observation and modeling. Limnol. Oceanogr. 56:1832-1849. https://doi.org/10.4319/lo.2011.56.5.1832
  16. Jokiel, P. L., Bahr, K. D. & Rodgers, K. S. 2014. Low-cost, highflow mesocosm system for simulating ocean acidification with $CO_2$ gas. Limnol. Oceanogr. Methods 12:313-322. https://doi.org/10.4319/lom.2014.12.313
  17. Jokiel, P. L., Rodgers, K. S., Kuffner, I. B., Andersson, A. J., Cox, E. F. & Mackenzie, F. T. 2008. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473-483. https://doi.org/10.1007/s00338-008-0380-9
  18. Kang, E. J. & Kim, K. Y. 2016. Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta). Algae 31:49-59. https://doi.org/10.4490/algae.2016.31.3.9
  19. Kim, J. -H., Kang, E. J., Edwards, M. S., Lee, K., Jeong, H. J. & Kim, K. Y. 2016. Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study. Algae 31:243-256. https://doi.org/10.4490/algae.2016.31.8.20
  20. Kim, J. -H., Kang, E. J., Kim, K., Jeong, H. J., Lee, K., Edwards, M. S., Park, M. G., Lee, B. -G. & Kim, K. Y. 2015. Evaluation of carbon flux in vegetative bay based on ecosystem production and $CO_2$ exchange driven by coastal autotrophs. Algae 30:121-137.
  21. Kim, J. -M., Lee, K., Yang, E. J., Shin, K., Noh, J. H., Park, K. -T., Hyun, B., Jeong, H. -J., Kim, J. -H., Kim, K. Y., Kim, M., Kim, H. -C., Jang, P. -G. & Jang, M. -C. 2010. Enhanced production of oceanic dimethylsulfide resulting from $CO_2$-induced grazing activity in a high $CO_2$ world. Environ. Sci. Technol. 44:8140-8143. https://doi.org/10.1021/es102028k
  22. Kim, J. -M., Shin, K., Lee, K. & Park, B. -K. 2008. In situ ecosystem- based carbon dioxide perturbation experiments: design and performance evaluation of a mesocosm facility. Limnol. Oceanogr. Methods 6:208-217. https://doi.org/10.4319/lom.2008.6.208
  23. Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl. Acad. Sci. USA. 108:14515-14520. https://doi.org/10.1073/pnas.1107789108
  24. Lewis, E. & Wallace, D. 1998. Program developed for $CO_2$ system calculation. ORNL/CDICA-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, 21 pp.
  25. Millero, F. J., Zhang, J. -Z., Lee, K. & Campbell, D. M. 1993. Titration alkalinity of seawater. Mar. Chem. 44:153-165. https://doi.org/10.1016/0304-4203(93)90200-8
  26. Pansch, A., Winde, V., Asmus, R. & Asmus, H. 2016. Tidal benthic mesocosms simulating future climate change scenarios in the field of marine ecology. Limnol. Oceanogr. Methods 14:257-267. https://doi.org/10.1002/lom3.10086
  27. Petersen, J. E., Kennedy, V. S., Dennison, W. C. & Kemp, W. M. 2009. Enclosed experimental ecosystem and scale: tools for understanding and managing coastal ecosystems. Springer-Verlag, New York, 222 pp.
  28. Ravaglioli, C., Lauritano, C., Buia, M. C., Balestri, E., Capocchi, A., Fontanini, D., Pardi, G., Tamburello, L., Procaccini, G. & Bulleri, F. 2017. Nutrient loading fosters seagrass productivity under ocean acidification. Sci. Rep. 7:13732. https://doi.org/10.1038/s41598-017-14075-8
  29. Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C. & Watson, A. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Policy Document 12/05. The Royal Society, London, 60 pp.
  30. Rerolle, V. M. C., Floquet, C. F. A., Mowlem, M. C., Connelly, D. P., Achterberg, E. P. & Bellerby, R. R. G. J. 2012. Seawater-pH measurements for ocean-acidification observations. Trends Anal. Chem. 40:146-157. https://doi.org/10.1016/j.trac.2012.07.016
  31. Riebesell, U., Bellerby, R. G. J., Grossart, H. -P. & Thingstad, F. 2008. Mesocosm $CO_2$ perturbation studies: from organism to community level. Biogeosciences 5:1157-1164. https://doi.org/10.5194/bg-5-1157-2008
  32. Riebesell, U., Czerny, J., von Brockel, K., Boxhammer, T., Budenbender, J., Deckelnick, M., Fischer, M., Hoffmann, D., Krug, S. A., Lentz, U., Ludwig, A., Muche, R. & Schulz, K. G. 2013. A mobile sea-going mesocosm system: new opportunities for ocean change research. Biogeosciences 10:1835-1847. https://doi.org/10.5194/bg-10-1835-2013
  33. Riebesell, U., Lee, K. & Nejstgaard. 2010. Pelagic mesocosms. In Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J. -P. (Eds.) Guide for Best Practices in Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, pp. 95-112.
  34. Saderne, V., Fietzek, P. & Herman, P. M. J. 2013. Extreme variations of $pCO_2$ and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling. PLoS ONE 8:e62689. https://doi.org/10.1371/journal.pone.0062689
  35. Stewart, R. I. A., Dossena, M., Bohan, D. A., Jeppesen, E., Kordas, R. L., Ledger, M. E., Meerhoff, M., Moss, B., Mulder, C., Shurin, J. B., Suttle, B., Thompson, R., Trimmer, M. & Woodward, G. 2013. Mesocosm experiments as a tool for ecological climate-change research. Adv. Ecol. Res. 48:71-181.
  36. Sunday, J. M., Fabricius, K. E., Kroeker, K. J., Anderson, K. M., Brown, N. E., Barry, J. P., Connell, S. D., Dupont, S., Gaylord, B., Hall-Spencer, J. M., Klinger, T., Milazzo, M., Munday, P. L., Russell, B. D., Sanford, E., Thiyagarajan, V., Vaughan, M. L. H., Wilddicombe, S. & Harley, C. D. G. 2017. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7:81-85. https://doi.org/10.1038/nclimate3161
  37. Wahl, M., Buchholz, B., Winde, V., Golomb, D., Guy-Haim, T., Muller, J., Rilov, G., Scotti, M. & Bottcher, M. E. 2015. A mesocosm concept for the simulation of near-natural shallow underwater climates: The Kiel Outdoor Benthocosms (KOB). Limnol. Oceanogr. Methods 13:651-663. https://doi.org/10.1002/lom3.10055
  38. Widdicombe, S., Dupont, S. & Thorndyke, M. 2010. Laboratory experiments and benthic mesocosm studies. In Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J. -P. (Eds.) Guide for Best Practices in Ocean Acidification Research and Data Reporting. Publications Office of the European Union, Luxembourg, pp. 113-122.

피인용 문헌

  1. Effect of elevated pCO2 on thermal performance of Chattonella marina and Chattonella ovata (Raphidophyceae) vol.35, pp.4, 2018, https://doi.org/10.4490/algae.2020.35.12.8
  2. 육상 기반 해양 폐쇄형 인공생태계를 활용한 해양생태계 위해성 평가: 객관적인 영향 평가 tool 제시 vol.39, pp.1, 2018, https://doi.org/10.11626/kjeb.2021.39.1.088
  3. Development of an efficiency criterion for the removal of pest organisms (ulvoid green algae and diatoms) from Neopyropia aquaculture using the acid wash (pH shock) method vol.548, pp.p2, 2022, https://doi.org/10.1016/j.aquaculture.2021.737677