Use of copper tungsten oxide as a liquid phase sintering aid for barium hexaferrite

  • Fisher, John G. (School of Materials Science and Engineering, Chonnam National University) ;
  • Le, Phan Gia (School of Materials Science and Engineering, Chonnam National University) ;
  • Meng, Meng (School of Materials Science and Engineering, Chonnam National University) ;
  • Heo, Sang-Hyeon (School of Materials Science and Engineering, Chonnam National University) ;
  • Bak, Tae-Jin (School of Materials Science and Engineering, Chonnam National University) ;
  • Moon, Byeol-Lee (School of Materials Science and Engineering, Chonnam National University) ;
  • Park, In-San (School of Materials Science and Engineering, Chonnam National University) ;
  • Lee, Dong-Kyu (School of Materials Science and Engineering, Chonnam National University) ;
  • Lee, Wu-Hui (School of Materials Science and Engineering, Chonnam National University)
  • Published : 2018.10.01

Abstract

The sintering behavior of $BaFe_{12}O_{19}$ with the addition of one and three weight % of $CuWO_4$ as a liquid phase sintering aid is studied. Samples are sintered in the temperature range $900-1250^{\circ}C$ and the effect of $CuWO_4$ addition on density, microstructure, phase composition and magnetic properties is examined. Compared to $BaFe_{12}O_{19}$ with no sintering aid addition, addition of 1 wt % $CuWO_4$ retards densification. Addition of 3 wt % $CuWO_4$ promotes densification at lower sintering temperatures but retards densification at temperatures > $1050^{\circ}C$. Three wt % $CuWO_4$ addition induces the formation of $BaWO_4$ and $Ba_3WFe_2O_9$ secondary phases at temperatures ${\geq}1100^{\circ}C$. Addition of $CuWO_4$ causes a decrease in saturation magnetization, remanent magnetization and coercivity.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. A.J. Moulson and J.M. Herbert, in "Electroceramics: Materials, Properties, Applications. 2nd Edition" (John Wiley & Sons Ltd., 2003) pp. 469-546.
  2. G. Alex, in "Modern Ferrite Technology" (Springer, 2010) pp. 51-70.
  3. J. Jalli, Y.-K. Hong, S. Bae, J.-J. Lee, G.S. Abo, A. Lyle, S.-H. Gee, H. Lee, T. Mewes, J.-C. Sur and S.-I. Lee, J. Appl. Phys. 105[7] (2009) 07A511. https://doi.org/10.1063/1.3062824
  4. H. Vu, D. Nguyen, J.G. Fisher, W.-H. Moon, S. Bae, H.-G. Park and B.-G. Park, Journal of Asian Ceramic Societies 1[2] (2013) 170-177. https://doi.org/10.1016/j.jascer.2013.05.002
  5. M. Hagymasi, A. Roosen, R. Karmazin, O. Dernovsek and W. Haas, J. Eur. Ceram. Soc. 25[12] (2005) 2061-2064. https://doi.org/10.1016/j.jeurceramsoc.2005.03.011
  6. V.A. Rane, G.J. Phatak and S.K. Date, IEEE Trans. Magn. 49[9] (2013) 5048-5054. https://doi.org/10.1109/TMAG.2013.2257822
  7. Y. Wang, Y.L. Liu, J. Li, Q. Liu, H.W. Zhang and V.G. Harris, AIP Adv. 6[5] (2016) 7.
  8. C. Wu, Z. Yu, G. Wu, K. Sun, Y. Yang, X. Jiang, R. Guo and Z. Lan, IEEE Trans. Magn. 51[11] (2015) 1-4.
  9. J.B. Forsyth, C. Wilkinson and A.I. Zvyagin, J. Phys.: Condens. Matter 3[43] (1991) 8433. https://doi.org/10.1088/0953-8984/3/43/010
  10. T.N. Kol'tsova and G.D. Nipan, Inorg. Mater. 35[4] (1999) 383-384.
  11. S.J.L. Kang, in "Sintering: Densification, Grain Growth & Microstructure" (Elsevier Butterworth Heinemann, 2005) pp. 181-192.
  12. R.D. Shannon, Acta Crystallographica Section A 32[5] (1976) 751-767. https://doi.org/10.1107/S0567739476001551
  13. R.N. Bhowmik and A. Saravanan, J. Appl. Phys. 107[5] (2010) 053916. https://doi.org/10.1063/1.3327433