• Title/Summary/Keyword: Ferrites

Search Result 318, Processing Time 0.02 seconds

Properties of Cu-Contained Spinel Ferrites with Various Cu Contents (Cu계 스피넬 페라이트의 Cu 함량에 따른 특성 변화)

  • 남중희;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1245-1252
    • /
    • 1996
  • The charcteristics for the copper-contained spinel ferrites such as NiCu-and ZnCu ferrites with various copper content are investigated in this study which can provide a explanation for the behavior of copper in sintering at a low temperatuer. The bulk density and the grain size for these sintered ferrites were increased with the larger amount of copper in compositions. In microstructure of copper-contained spinel ferrites copper exists in the grain boundary which is sintering process. Electrical resistivity and frequency range with maximum Q-facor of NiCu-or ZnCu ferrites were decreased as increasing of copper content in ferrite composition.

  • PDF

Synthesis Processing of the Fine (Ni, Zn)-ferrite Powder for $CO_2$ Decomposition of the Flue Gas in the Iron Foundry (제철소의 연소배가스 $CO_2$ 분해용 (Ni, Zn)-ferrite 미세분말 합성공정 연구)

  • 김정식;안정률
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.164-167
    • /
    • 2000
  • Flue gases in the iron foundry consist of 15~20% CO2 as an air pollution gas whose emission should be mitigated in order to protect the environment. In the present study, ultrafine powders of NixZn1-xFe2O4 as a potential catalyst for the CO2 decomposition were prepared by the coprecipitation methods. Oxygen deficient ferrites (MeFe2O4-$\delta$) can decompose CO2 as C and O2 at a low temperature of about 30$0^{\circ}C$. The XRD result of synthesized ferrites showed the spinel structure of ferrites and ICP-AES and EDS quantitative analyses showed the composition similar with initial molar ratios of the mixed solution prior to reaction. The BET surface area of the (Ni, Zn)-ferrites was about 77~89.5$m^2$/g and their particle size was observed about 10~20 nm. The CO2 decomposition efficiency of the oxygen deficient (Nix, Zn1-x)-ferrites was the highest at x=0.3, and the ternary (Ni, Zn)-ferrites was better than that of binary Ni-ferrites.

  • PDF

CO2 Decomposition with Waste Ferrite (폐기물 페라이트를 이용한 CO2분해)

  • 신현창;김진웅;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.146-152
    • /
    • 2003
  • The waste ferrites from magnetic core manufacturing process were used to $CO_2$gas decomposition to avoid the greenhouse effects. The waste ferrites are the mixed powder of Ni-Zn and Mn-Zn ferrites core. In the reduction of ferrites by 5% $H_2/Ar$ mixed gas, the weight loss of ferrites was about 14~16wt%. After the$CO_2$gas decomposition reaction, the weight of the reduced ferrites was increased up to 11wt%.$CO_2$gas was decomposed by oxidation of Fe and FeO in reduced compound and the phase of the waste ferrite was changed to spinel structure. A new technique capable of$CO_2$decomposition as low cost process through utilizing waste ferrite was development.

The Variation of Permeability and$Q_{max}$ Frequency with Processing Parameters in NiCuZn Ferrites (제조 공정 Parameter에 따른 NiCuZn Ferrite의 투자율과 $Q_{max}$ 주파수 변화)

  • 신재영;박지호;박진채;한종수;송병무
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.19-24
    • /
    • 1997
  • Composition and process conditions for low temperature sintered NiCuZn ferrites were investigated, so as to fabricate multilayered chip inductor. The$Fe_2O_3$ deficiency for low temperature sintering was decreased with NiO contents of NiCuZn ferrites. The permeability of NiCuZn ferrites can be controlled in the range of 12~562 with the variation of NiO and $Co_3O_4$ contents. The $Q_{max} $ frequency of NiCuZn ferrites was decreased from 50 MHz to 3 MHz linearly with permeability increase from 60 to 560. The relation between the $Q_{max}$ frequency(Y) and permeability(X) of NiCuZn ferrites was expressed with the following empirical equation, logY=4.2-1.4logX.

  • PDF

Study on the Power Loss of High Frequency Mn-Zn ferrites (고주파 Mn-Zn ferrites 전력손실에 대한 고찰)

  • 서정주
    • Resources Recycling
    • /
    • v.11 no.5
    • /
    • pp.34-38
    • /
    • 2002
  • To minimize the size of transformer volume, the operating frequency of ferrites cores increasing. The power loss of Mn-Zn ferrites comprises hysteresis loss, eddy current loss and residual loss. In the range more then 500 KHz, the total power loss is mainly due to the residual loss. The power loss increase with the frequency 3rd power. To minimize residual loss as well as eddy current loss, the microstructure should have small grain and high density, It should be noted that as the product of resonance frequency and static permeability increase, the power loss decrease at high frequency region.

Decomposition of Carbon Dioxide Using Sr Ferrites with Various Compositions (다양한 조성의 Sr 페라이트를 이용한 CO2분해 반응 특성)

  • 신현창;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.191-197
    • /
    • 2003
  • Sr ferrites with various compositions were applied to the decomposition of $CO_2$ to mitigate the greenhouse effect. In the reduction reaction of Sr ferrites up to 80$0^{\circ}C$, starting temperature was lower with increasing of Sr content in Sr ferrite. However, the reactivity was higher with decreasing Sr content. In the $CO_2$ decomposition reaction with reduced Sr ferrites, the amount of CO and C were depended on the ratio of Sr and Fe in Sr ferrite. With increasing Sr content. larger amount of C were deposited on the surface of ferrite. Therefore, in order to apply Sr ferrites for the decomposition of $CO_2$, it is necessary to control the ratio of Sr and Fe according to the conditions used.

Improvement of $CO_2$Decomposition by Impregnating Noble Metals to Nano-size (Ni, Zn)-ferrites (귀금속 첨가에 의한 나노 (Ni, Zn)-페라이트의 $CO_2$분해 향상)

  • Kim, Jeong-Sik;An, Jeong-Ryul;Gang, Gye-Myeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.846-850
    • /
    • 2001
  • In the present study, nano-size powders of ternary ferrites, $Ni_{0.5}Zn_{0.5}Fe_2O_4$, as the potential catalysts of $CO_2$decomposition, were prepared by the wet processing of hydrothermal synthesis and coprecipitation method, and the catalyzing effects of impregnation of the noble metals, Pt and Pd, onto $Ni_{0.5}Zn_{0.5}Fe_2O_4$for the $CO_2$decomposition were investigated. XRD results of the synthesized ferrites showed a typical spinel structure of ferrite and the particle size was very small as about 6~10 nm. BET surface area of the ternary ferrites was not affected by the impregnation of Pt and Pd. The reactivity of the $CO_2$decomposition to carbon was improved by the impregnation of the noble metals of Pd and Pt. The effect of Pd-impregnation on the $CO_2$decomposition rate was higher than Pt-impregnation.

  • PDF

Microstructure and Magnetic Property of Nanostructured NiZn Ferrite Powder

  • Nam, Joong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1119-1123
    • /
    • 2002
  • Nanostructured spinel NiZn ferrites were prepared by the sol-gel method from metal nitrate raw materials. Analyses by X-ray diffraction and scanning electron microscopy showed the average particle size of NiZn ferrite was under 50 nm. The single phase of NiZn ferrites was obtained by firing at 250${\circ}C$, resulting in nanoparticles exhibiting normal ferrimagnetic behavior. The nanostructured $Ni_{1-X}Zn_XFe_2O_4$ (x=0.0∼1.0) were found to have the cubic spinel structure of which the lattice constants ${\alpha}_2$ increases linearly from 8.339 to 8.427 ${\AA}$ with increasing Zn content x, following Vegard's law, approximately. The saturation magnetization $M_s$ was 48 emu/g for x=0.4 and decreased to 8.0 emu/g for higher Zn contents suggesting the typical ferrimagnetism in mixed spinel ferrites. Pure NiZn ferrite phase substituted by Cu was observed before using the additive but hematite phase was partially appeared at $Ni_{0.2}Zn_{0.2}Cu_{0.6}Fe_2O_4$. On the other hand, the hematite phase in this NiZn Cu ferrite was disappeared after using the additive of acethyl aceton with small amount. The saturation magnetization Ms of $Ni_{0.2}Zn_{0.8-y}Cu_yFe_2O_4$(y=0.2∼0.6) as measured was about 51 emu/g at 77K and 19 emu/g at room temperature, respectively.