Browse > Article

Use of copper tungsten oxide as a liquid phase sintering aid for barium hexaferrite  

Fisher, John G. (School of Materials Science and Engineering, Chonnam National University)
Le, Phan Gia (School of Materials Science and Engineering, Chonnam National University)
Meng, Meng (School of Materials Science and Engineering, Chonnam National University)
Heo, Sang-Hyeon (School of Materials Science and Engineering, Chonnam National University)
Bak, Tae-Jin (School of Materials Science and Engineering, Chonnam National University)
Moon, Byeol-Lee (School of Materials Science and Engineering, Chonnam National University)
Park, In-San (School of Materials Science and Engineering, Chonnam National University)
Lee, Dong-Kyu (School of Materials Science and Engineering, Chonnam National University)
Lee, Wu-Hui (School of Materials Science and Engineering, Chonnam National University)
Publication Information
Abstract
The sintering behavior of $BaFe_{12}O_{19}$ with the addition of one and three weight % of $CuWO_4$ as a liquid phase sintering aid is studied. Samples are sintered in the temperature range $900-1250^{\circ}C$ and the effect of $CuWO_4$ addition on density, microstructure, phase composition and magnetic properties is examined. Compared to $BaFe_{12}O_{19}$ with no sintering aid addition, addition of 1 wt % $CuWO_4$ retards densification. Addition of 3 wt % $CuWO_4$ promotes densification at lower sintering temperatures but retards densification at temperatures > $1050^{\circ}C$. Three wt % $CuWO_4$ addition induces the formation of $BaWO_4$ and $Ba_3WFe_2O_9$ secondary phases at temperatures ${\geq}1100^{\circ}C$. Addition of $CuWO_4$ causes a decrease in saturation magnetization, remanent magnetization and coercivity.
Keywords
Ferrites; Magnetic properties; Liquid phase sintering; Microstructure; Hard magnets;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A.J. Moulson and J.M. Herbert, in "Electroceramics: Materials, Properties, Applications. 2nd Edition" (John Wiley & Sons Ltd., 2003) pp. 469-546.
2 G. Alex, in "Modern Ferrite Technology" (Springer, 2010) pp. 51-70.
3 J. Jalli, Y.-K. Hong, S. Bae, J.-J. Lee, G.S. Abo, A. Lyle, S.-H. Gee, H. Lee, T. Mewes, J.-C. Sur and S.-I. Lee, J. Appl. Phys. 105[7] (2009) 07A511.   DOI
4 M. Hagymasi, A. Roosen, R. Karmazin, O. Dernovsek and W. Haas, J. Eur. Ceram. Soc. 25[12] (2005) 2061-2064.   DOI
5 V.A. Rane, G.J. Phatak and S.K. Date, IEEE Trans. Magn. 49[9] (2013) 5048-5054.   DOI
6 Y. Wang, Y.L. Liu, J. Li, Q. Liu, H.W. Zhang and V.G. Harris, AIP Adv. 6[5] (2016) 7.
7 C. Wu, Z. Yu, G. Wu, K. Sun, Y. Yang, X. Jiang, R. Guo and Z. Lan, IEEE Trans. Magn. 51[11] (2015) 1-4.
8 J.B. Forsyth, C. Wilkinson and A.I. Zvyagin, J. Phys.: Condens. Matter 3[43] (1991) 8433.   DOI
9 T.N. Kol'tsova and G.D. Nipan, Inorg. Mater. 35[4] (1999) 383-384.
10 S.J.L. Kang, in "Sintering: Densification, Grain Growth & Microstructure" (Elsevier Butterworth Heinemann, 2005) pp. 181-192.
11 R.D. Shannon, Acta Crystallographica Section A 32[5] (1976) 751-767.   DOI
12 R.N. Bhowmik and A. Saravanan, J. Appl. Phys. 107[5] (2010) 053916.   DOI
13 H. Vu, D. Nguyen, J.G. Fisher, W.-H. Moon, S. Bae, H.-G. Park and B.-G. Park, Journal of Asian Ceramic Societies 1[2] (2013) 170-177.   DOI