DOI QR코드

DOI QR Code

자유탐구 활동에서 나타난 과학고등학교 학생들의 인식적 목표, 인식적 이해와 추론의 복잡성 탐색

Exploring Science High School Students' Epistemic Goals, Epistemic Considerations and Complexity of Reasoning in Open Inquiry

  • 투고 : 2018.05.19
  • 심사 : 2018.08.11
  • 발행 : 2018.08.31

초록

본 연구는 자유탐구 활동에서 나타난 과학고등학교 학생들의 인식적 목표와 인식적 이해가 추론 복잡성과 어떠한 관련이 있는지 알아보고, 자유탐구가 참과학 탐구의 성격을 띠게 하는 맥락을 탐색하였다. 1명의 교사와 12명의 2학년 학생이 연구에 참여하였으며, 연구에 참여한 6팀 중 인식적 측면과 추론의 복잡성이 뚜렷하게 구분되는 2팀을 초점 집단으로 선정하여 사례연구를 실시하였다. 학생의 활동과 면담을 녹화, 녹음한 후 전사한 자료, 참여관찰 자료, 학생이 작성한 인공물 등을 분석하여 다음과 같은 연구 결과를 얻었다. 첫째, 학생들의 인식적 목표와 이해는 인식 대상의 특성과 맥락에 따라 차이가 있었다. '현상 이해에 대한 가치 공유, 연구 가치에 대한 성찰 기회, 협업과 합의를 요구한 과제 특성, 팀원 간의 충분한 소통 기회'와 같은 맥락은 학생들의 인식적 목표와 이해의 향상을 촉진했다. 반면, '연구 관련 문헌에 대한 비판적 검토 기회의 부재, 환경적 제약'과 같은 맥락은 학생들의 인식적 목표와 이해의 하락을 촉진했다. 둘째, 학생들의 인식적 목표와 이해는 추론의 복잡성에 영향을 미쳤다. '과학적 의미 형성'의 목표는 학생이 생성한 의문을 바탕으로 검증 가능한 가설을 설정하는 높은 수준의 추론에 영향을 미쳤다. 정당화에 대한 높은 이해는 대조군 설정에 의도적으로 주목하고 독창적인 실험 노하우를 개발하는 높은 수준의 추론으로 이어졌다. 청중에 대한 높은 이해는 논변을 들어 자신들의 연구를 방어하고, 후속 연구를 제안하는 높은 수준의 추론으로 이어졌다. 반면, '정답 찾기'의 목표와 정당화에 대한 낮은 이해는 자료의 의미를 해석하지 않고, 실험의 한계점을 조절하지 않는 낮은 수준의 추론으로 이어졌다. 청중에 대한 낮은 이해는 연구를 적극적으로 방어하지 않고, 후속 연구를 고려하지 않는 낮은 수준의 추론으로 이어졌다. 본 연구는 자유탐구 지도와 관련하여 활동의 가치를 공유하고, 학생의 인식적 권위를 확인할 수 있는 소통 기회와 비판적 검토 기회를 제공할 것을 시사한다.

The purpose of this study is to explore the relationship between epistemic goals, epistemic considerations and complexity of reasoning of science high school students in an open inquiry and to explore the context on how open inquiry compares with the characteristics of an authentic scientific inquiry. Two teams were selected as focus groups and a case study was conducted. The findings are as follows: First, the contexts, such as 'sharing the value for the phenomenon understanding, reflection on the value of the research, task characteristics that require collaboration and consensus, and sufficient communication opportunities,' promote epistemic goals and considerations. On the other hand, contexts such as 'lack of opportunity for critical review of related literature and environmental constraints' lowered epistemic sides. Second, epistemic goals and considerations influenced the reasoning complexity. The goal of 'scientific sense making' led to reasoning that pose testable hypotheses based on students' own questions. The high justification considerations led to purposely focusing attention to the control designs and developing creative experimental know-how. The high audience considerations led to defending their findings through argumentation and suggesting future research. On the other hand, the goal of 'doing the lesson' and the low justification considerations led to reasoning that did not interpret the meaning of the data and did not control the limit of experiment. The low audience considerations led to reasoning that did not actively defend their findings and not suggest future research. The results of this study suggest that guidance should provide communication and critical review opportunities.

키워드

참고문헌

  1. Berland, L. K., & Crucet, K. (2016). Epistemological trade-offs: accounting for context when evaluating epistemological sophistication of student engagement in scientific practices. Science Education, 100(1), 5-2. https://doi.org/10.1002/sce.21196
  2. Berland, L. K., & Hammer, D. (2012a). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68-94. https://doi.org/10.1002/tea.20446
  3. Berland, L. K., & Hammer, D. (2012b). Students' framings and their participation in scientific argumentation. In M. Khine(Eds.), Perspectives on Scientific Argumentation(pp. 77-93). Dordrecht: Springer.
  4. Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2016). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(7), 1082-1112. https://doi.org/10.1002/tea.21257
  5. Burgin, S., & Sadler, T. D. (2013). Consistency of practical and formal epistemologies of science held by participants of a research apprenticeship. Research in Science Education, 43(6), 2179-2206. https://doi.org/10.1007/s11165-013-9351-4
  6. Bybee, R. W. (2000). Teaching science as inquiry. In J. Minstrell & E. H. van Zee (Eds.), Inquiring into Inquiry Learning and Teaching in Science(pp. 20-46). Washington, DC: American Association for the Advancement of Science.
  7. Charney, J., Hmelo-Silver, C. E., Sofer, W., Neigeborn, L., Coletta, S., & Nemeroff, M. (2007). Cognitive Apprenticeship in Science through Immersion in Laboratory Practices. International Journal of Science Education, 29(2), 195-213. https://doi.org/10.1080/09500690600560985
  8. Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623-654. https://doi.org/10.1002/(SICI)1098-2736(199808)35:6<623::AID-TEA3>3.0.CO;2-O
  9. Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218. https://doi.org/10.1002/sce.10001
  10. Cho, H. C. (2011). A comparison of epistemological beliefs between Korean scientifically gifted and regular middle school students. The Journal of the Korean Society for the Gifted and Talented, 10(1), 5-26.
  11. Corbin, J., Strauss, A., & Strauss, A. L. (2014). Basics of Qualitative Research. California: Sage.
  12. Crawford, B. A. (2012). Moving the essence of inquiry into the classroom: engaging teachers and students in authentic science. In: Tan K., Kim M (Eds.), Issues and Challenges in Science Education Research (pp. 25-42). Dordrecht: Springer.
  13. Dolan, E., & Grady, J. (2010). Recognizing Students’ Scientific Reasoning: A Tool for Categorizing Complexity of Reasoning During Teaching by Inquiry. Journal of Science Teacher Education, 21(1), 31-55. https://doi.org/10.1007/s10972-009-9154-7
  14. Duschl, R. A., & Grandy, R. (2013). Two Views About Explicitly Teaching Nature of Science. Science & Education, 22(9), 2109-2139. https://doi.org/10.1007/s11191-012-9539-4
  15. Elby, A., & Hammer, D. (2001). On the substance of a sophisticated epistemology. Science Education, 85(5), 554-567. https://doi.org/10.1002/sce.1023
  16. Fusco, D. (2001). Creating relevant science through urban planning and gardening. Journal of Research in Science Teaching, 38(8), 860-877. https://doi.org/10.1002/tea.1036
  17. Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer, and P. R. Pintrich(Eds.), Personal Epistemology: The Psychology of Beliefs About Knowledge and Knowing (pp. 169-190). Mahwah, NJ: Erlbaum.
  18. Jeong, S. H., Choi, H. D., & Yang, I. H. (2011). Analysis on the Complexity of Scientific Reasoning during Pre-service Elementary School Teachers' Open-Inquiry Activities. Journal of Korean Elementary Science Education, 30(3), 379-393.
  19. Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). "Doing the lesson" or"doing science": Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  20. Kang. E. J., Kim, S. J., & Park, J. W. (2009). Analysis of Features Related to Authentic Science Inquiry Appear in Open-ended Activities of the Elementary Science-gifted Students. Journal of Gifted/Talented Education, 19(3), 647-667.
  21. Kapon, S. (2016). Doing research in school: Physics inquiry in the zone of proximal development. Journal of Research in Science Teaching, 53(8), 1172-1197. https://doi.org/10.1002/tea.21325
  22. Kim, M. K., & Kim, H. B. (2007). The Effects of Authentic Open Inquiry on Cognitive Reasoning through an Analysis of Types of Student-generated Questions. Journal of the Korean Association for Science Education, 27(9), 930-943.
  23. Kim, S. J., & Chung, Y. L. (2015). Structural Relationships Among the Epistemological Beliefs, Metacognition, Science Inquiry Skills, and Science Achievement of High School Students. Journal of the Korean Association for Science Education, 35(6), 931-938. https://doi.org/10.14697/jkase.2015.35.6.0931
  24. Kuhn, D. (2004). What is scientific thinking and how does it develop? In U. Goswami (Eds.), Blackwell Handbook of Childhood Cognitive Development. Malden, MA: Blackwell.
  25. Kwon, J. S., & Kim, H. B. (2016). Exploring Small Group Argumentation Shown in Designing an Experiment: Focusing on Students' Epistemic Goals and Epistemic Considerations for Activities. Journal of the Korean Association for Science Education, 36(1), 45-61. https://doi.org/10.14697/jkase.2016.36.1.0045
  26. Lee, M. J., & Kim, H. B. (2016). Science High School Students' Shift in Scientific Practice and Perception Through the R&E Participation: on the Perspective of Legitimate Peripheral Participation in the Community of Practice. Journal of the Korean Association for Science Education, 36(3), 371-387. https://doi.org/10.14697/jkase.2016.36.3.0371
  27. Lim, S. C., Kim, J. H., & Jeong, J. W. (2013). Analysis of the Scientific Reasoning Ability of Science-Gifted 2nd Middle School Students in Open-Inquiry Activities. Journal of Science Education, 37(2), 323-337. https://doi.org/10.21796/jse.2013.37.2.323
  28. Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39(1), 57-68. https://doi.org/10.1207/s15326985ep3901_6
  29. McNeill, K. L., & Krajcik, J. (2007). Middle school students' use of appropriate and inappropriate evidence in writing scientific explanations. In M. C. Lovett., & P. Shah (Eds.), Thinking with Data (pp. 233-265). NJ: Erlbaum.
  30. Merriam, S. (1988). Case Study Research in Education: A Qualitative Approach. San Francisco: Jossey-Bass.
  31. MOE(Ministry of Education & Human Resources Development). (2007). 2007 Science Curriculum for Middle School Students. Seoul, Republic of Korea: Daehangyogwaseo, Inc.
  32. NGSS Lead States. (2013). Next Generation Science Standards: For States, by States. Washington, DC: The National Academies Press.
  33. Park, C. J., & Cha, H. Y. (2017). Considerations and Scientific Argumentation Level in Argumentation to Conceptualize the Concept of Natural Selection of Science-Gifted Elementary Students. Journal of the Korean Association for Science Education, 37(4), 565-575. https://doi.org/10.14697/JKASE.2017.37.4.565
  34. Park, J. W. (2009). Discussions for preparation and types of mentorship for scientifically gifted students. Journal of Science Education for the Gifted, 1(3), 1-19.
  35. Rivera Maulucci, M. S., Brown, B. A., Grey, S. T., & Sullivan, S. (2014). Urban middle school students’ reflections on authentic science inquiry. Journal of Research in Science Teaching, 51(9), 1119-1149. https://doi.org/10.1002/tea.21167
  36. Sandoval W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634-656. https://doi.org/10.1002/sce.20065
  37. Scherr, R. E., & Hammer, D. (2009). Student behavior and epistemological framing: Examples from collaborative active-learning activities in physics. Cognition and Instruction, 27(2), 147-174. https://doi.org/10.1080/07370000902797379
  38. Wickman, P. O. (2004). The practical epistemologies of the classroom: A study of laboratory work. Science Education, 88(3), 325-344. https://doi.org/10.1002/sce.10129
  39. Yin, R. K. (2009). Case Study Research: Design and Method(4th ed.). Thousand Oaks, CA: Sage.

피인용 문헌

  1. 문제의 구성을 강조한 프로그램에서 나타난 탐구 문제와 과학적 추론의 관련성 탐색 -삼투 현상 탐구 활동을 중심으로- vol.40, pp.1, 2018, https://doi.org/10.14697/jkase.2020.40.1.77
  2. 초등 과학영재학생들의 자유탐구 산출물 특성 분석 vol.39, pp.2, 2018, https://doi.org/10.15267/keses.2020.39.2.243