DOI QR코드

DOI QR Code

겹 날개를 사용하는 곤충 모방 비행체의 날개 형상에 대한 파라메트릭 연구

Parametric Study on Wing Design of Insect-mimicking Aerial Vehicle with Biplane Configuration

  • Park, Heetae (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Dongmin (Department of Aerospace Engineering, Chungnam National University) ;
  • Mo, Hyemin (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Lamsu (Department of Aerospace Engineering, Chungnam National University) ;
  • Lee, Byoungju (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Inrae (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Seungkeun (Department of Aerospace Engineering, Chungnam National University) ;
  • Ryi, Jaeha (Department of Aerospace Engineering, Chungnam National University) ;
  • Choi, Jong-Soo (Department of Aerospace Engineering, Chungnam National University)
  • 투고 : 2018.03.10
  • 심사 : 2018.08.03
  • 발행 : 2018.09.01

초록

본 논문에서는 곤충 모방 날갯짓 비행체의 가장 중요한 설계 변수 중 하나인 날개에 대한 파라메트릭 연구에 대해 서술하였다. 추력, 피칭모멘트, 소비전력, 추력 대 전력비의 비교 및 분석을 통해 날개 형상에 대한 실험적 연구를 진행하였다. 힘과 모멘트는 2축 밸런스를 이용하여 측정되었으며 날갯짓 주파수는 홀센서를 이용하여 측정되었다. 날개 형태는 겹 날개 형태를 채택하였으며 이를 통해 Clap and fling 효과를 구현하였다. 기준 날개 형상으로 잠자리의 날개를 선정하였고, 이를 기준으로 가로세로비 및 면적에 대한 실험을 진행하였다. 결과적으로, 가로세로비와 면적이 증가할수록 추력, 피칭모멘트, 소비전력이 증가하는 것을 확인하였다. 또한, 일정 수준 이상의 가로세로비 혹은 면적을 가지는 날개를 메커니즘에 적용하였을 때 메커니즘이 정상적으로 구동되지 않는 것을 확인하였다. 최종적으로 날개 형상 선정은 필요한 최소추력을 만족시키는 날개 중에서 추력 대 전력비를 비교함으로써 이루어졌다. 하지만 추력선과 무게중심의 불일치로 인한 모멘트의 발생으로 안정성을 확보할 수 없었다. 이에 안정성을 확보하기 위해 상단과 하단에 댐퍼를 부착한 실내 비행 시험을 통해 날개의 파라메트릭 연구 결과에 대한 간접적인 성능 검증을 수행하였다.

This paper conducts parametric studies on flapping wing design, one of the most important design parameters of insect-mimicking aerial vehicles. Experimental study on wing shape was done through comparison and analysis of thrust, pitching moment, power consumption, and thrust-to-power ratio. A two-axis balance and hall sensor measure force and moment, and flapping frequency, respectively. Wing configuration is biplane configuration which can develop clap and fling effect. A reference wing shape is a simplified dragonfly's wing and studies on aspect ratio and wing area were implemented. As a result, thrust, pitching moment, and power consumption tend to increase as aspect ratio and area increase. Also, it is found that the flapping mechanism was not normally operated when the main wing has an aspect ratio or area more than each certain value. Finally, the wing shape is determined by comparing thrust-to-power ratio of all wings satisfying the required minimum thrust. However, the stability is not secured due to moment generated by disaccord between thrust line and center of gravity. To cope with this, aerodynamic dampers are used at the top and bottom of the fuselage; then, indoor flight test was attempted for indirect performance verification of the parametric study of the main wing.

키워드

참고문헌

  1. Lee, J. H., Adhikari, D. R., and Kim, C. A., "Experimental Study on the Mechanism of Flapping Micro Aerial Vehicle and Wing Feature," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2018, pp. 40-41.
  2. Nguyen, T. A., Phan, H. V., AU, T. K. L., and Park, H. C., "Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism," Bioinspiration & Biomimetics, Vol. 11, No. 4, 2016, 046001. https://doi.org/10.1088/1748-3190/11/4/046001
  3. Han, J. S., Chang, J. W., and Jeon, C. S., "The Effect of Aspect Ratio on the Aerodynamics Characteristics of an Insectbased Flapping Wing," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 8, 2012, pp. 662-669. https://doi.org/10.5139/JKSAS.2012.40.8.662
  4. Fu, J., Liu, X., Shyy, W., and Qiu, H., "Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings," Bioinspiration & Biomimetics, Vol. 13, No. 3, 2018, 036001. https://doi.org/10.1088/1748-3190/aaaac1
  5. Phillips, N., Knowles, K., and Bomphrey, R. J., "The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing," Bioinspiration & Biomimetics, Vol. 10, No. 5, 2015, 056020. https://doi.org/10.1088/1748-3190/10/5/056020
  6. De Croon, G. C. H. E., De Clercq, K. M. E., Ruijsink, R., Remes, B., and De Wagter, C., "Design, aerodynamics, and vision-based control of the DelFly," International Journal of Micro Air Vehicles, Vol. 1, No. 2, 2009, pp. 71-97. https://doi.org/10.1260/175682909789498288
  7. Lentink, D., Jongerius, S. R., and Bradshaw, N. L., "The scalable design of flapping micro-air vehicles inspired by insect flight," Flying insects and robots, Springer, Berlin, Heidelberg, 2009, pp. 185-205.
  8. Bruggeman, B., "Improving flight performance of DelFly II in hover by improving wing design and driving mechanism," M. Sc. thesis, Delft University of Technology, Delft, 2010.
  9. Lee, B. J., Kim, I. R., Ryi, J. H., Kim, S. K., and Suk, J. Y., "Experimental Study on Actuating Mechanism Design of Flapping-Wng Micro Air Vehicle for Attitude Control," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2017, pp. 558-560.
  10. Keennon, M., Klingebiel, K., Won, H., and Andriuko, A., "Development of the nano hummingbird: a tailless flapping wing micro air vehicle" 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012, 2012-0588
  11. Nan, Y., Karásek, M., Lalami, M. E., and Preumont, A., "Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicles," Bioinspiration & Biomimetics, Vol. 12, No. 2, 2017, 026010. https://doi.org/10.1088/1748-3190/aa5c9e
  12. Fuller, S. B., Teoh, Z. E., Chirarattananon, P., Perez-Arancibia, N. O., Greenberg, J., and Wood, R. J., "Stabilizing air dampers for hovering aerial robotics: design, insect-scale flight tests, and scaling," Autonomous Robots, Vol. 41, No. 8, 2017, pp. 1555-1573. https://doi.org/10.1007/s10514-017-9623-3
  13. Shyy, W., and Liu, H., "Flapping Wings and Aerodynamic Lift: The Role of Leading- Edge Vortices," AIAA JOURNAL, Vol. 45, No. 12, 2007, pp. 2817-2819. https://doi.org/10.2514/1.33205
  14. Percin, M., Hu, Y., van Oudheusden, W., Remes, B., and Scarano, F., "Wing flexibility effects in clap-and-fling," International Journal of Micro Air Vehicles, Vol. 3, No. 4, 2011, pp. 217-227 https://doi.org/10.1260/1756-8293.3.4.217