DOI QR코드

DOI QR Code

횡 방향으로 운동하는 투과성 진자판을 이용한 파랑에너지 차단과 추출

Block and Extraction of Wave Energy Using a Rolling Porous Pendulum Plate

  • 조일형 (제주대학교 해양시스템공학과)
  • Cho, Il-Hyoung (Department of Ocean System Engineering, Jeju National University)
  • 투고 : 2018.07.05
  • 심사 : 2018.08.20
  • 발행 : 2018.08.31

초록

파랑 중 횡 방향으로 운동하는 투과성 진자판을 파랑에너지를 차단과 추출을 동시에 하는 복합 시스템으로 활용하는 기초 연구를 수행하였다. Porter and Evans(1995)가 제안한 Galerkin 방법을 사용하여 투과성 진자판에 대한 회절과 방사 문제를 풀어 반사율과 투과율, 운동변위, 그리고 추출파워를 구하였다. Galerkin 방법은 고유함수전개법 보다 수렴성이 좋기 때문에 짧은 계산시간에도 불구하고 정확한 해를 주었다. 투과성 진자판이 불투과성 진자판 보다 파랑에너지 추출과 차단 측면에서 모두 효과적이라고 말할 수는 없지만 파랑 하중을 줄일 수 있고 해수 교환이 가능하다는 장점은 지니고 있다.

The preliminary study was carried out to utilize the rolling porous pendulum plate as a hybrid system combining blocking and extracting of wave energy. The Galerkin method suggested by Porter and Evans (1995) was used to solve the diffraction and radiation problems to obtain reflection and transmission coefficient, roll displacement, extracted power. The Galerkin method provides better convergence than the matched eigenfunction expansion method (MEEM), which improves the accuracy of the analytical solution even if the CPU time is shorter. The porous plate can not be said to be more effective than the impermeable plate in terms of wave energy extraction and wave blocking, but it has the advantage of reducing the wave load and exchanging seawater.

키워드

참고문헌

  1. Abul-Azm, A.G. (1993). Wave diffraction through submerged breakwaters. J. Waterway, Port, Coastal and Ocean Engineering, ASCE, 119(6), 587-605. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(587)
  2. Chang, K.H., Tsaur, D.H. and Huang, L.H. (2012). Accurate solution to diffraction around a modified V-shaped breakwater. Coastal Engineering, 68, 56-66. https://doi.org/10.1016/j.coastaleng.2012.05.002
  3. Cho, I.H. (2017a). Performance analysis of wave energy converter using a submerged pendulum plate. J. Korean Soc. Mar. Environ. Energy, 20(2), 91-99. https://doi.org/10.7846/JKOSMEE.2017.20.2.91
  4. Cho, I.H., Lee, H. and Bae, Y.H. (2017b). Wave energy extraction using partially submerged pendulum plate with quay wall. J. Ocean Engineering and Technology, 31(3), 208-218. https://doi.org/10.5574/KSOE.2017.31.3.208
  5. Cho, I.H. and Kim, M.H. (2008). Wave absorbing system using inclined perforated plates. J. Fluid Mechanics, 608, 1-20.
  6. Evans, D.V. (1970). Diffraction of water waves by submerged vertical plate. J. Fluid Mechanics, 40(3), 433-451. https://doi.org/10.1017/S0022112070000253
  7. Gayen, R. and Mondal, A. (2014). A hypersingular integral equation approach to the porous plate problem. Applied Ocean Research, 46, 70-78. https://doi.org/10.1016/j.apor.2014.01.006
  8. Isaacson, M., Premasiri, S. and Yang, G. (1998). Wave interactions with vertical slotted barrier. J Waterway, Port, Coastal and Ocean Engineering, 124(3), 118-126. https://doi.org/10.1061/(ASCE)0733-950X(1998)124:3(118)
  9. Karmakar, D. and Guedes Soares, C. (2014). Wave transformation due to multiple bottom-standing porous barriers. Ocean Engineering, 80, 50-63. https://doi.org/10.1016/j.oceaneng.2014.01.012
  10. Losada, I.J., Losada, M.A. and Roldan, A.J. (1992). Propagation of oblique incident waves past rigid vertical thin barriers. Applied Ocean Research, 14(3), 191-199. https://doi.org/10.1016/0141-1187(92)90014-B
  11. Lucas, J., Livingstone, M., Vuorinen, M. and Cruz, J. (2012). Development of a wave energy converter (WEC) design tool-application to the WaveRoller WEC including validation of numerical estimates. Proc. of the Fourth International Conference on Ocean Energy, Dublin, Ireland.
  12. Macaskill, C. (1979). Reflexion of water waves by a permeable barrier. J. Fluid Mechanics, 95(1), 141-157. https://doi.org/10.1017/S0022112079001385
  13. Martins-Rivas, H. and Mei, C.C. (2009). Wave power extraction from an oscillating water column at the tip of a breakwater. J. Fluid Mechanics, 626, 395-414. https://doi.org/10.1017/S0022112009005990
  14. Porter, R. and Evans, D.V. (1995). Complementary approximations to wave scattering by vertical barriers. J. Fluid Mechanics, 294, 155-180. https://doi.org/10.1017/S0022112095002849
  15. Sahoo, T. (1998). On the scattering of water waves by porous barriers. Zeitschrift fur Angewandte Mathematik und Mechanik, 78(5), 364-370. https://doi.org/10.1002/(SICI)1521-4001(199805)78:5<364::AID-ZAMM364>3.0.CO;2-N
  16. Tuck, E.O. (1975). Matching problems involving flow through small holes. Advances in Applied Mechanics, 15, 89-158.
  17. Ursell, F. (1947). The effect of a fixed vertical barrier on surface waves in deep water. Proc. of the Cambridge Philosophical Society, 43(3), 374-382. https://doi.org/10.1017/S0305004100023604
  18. Whittaker, T.J.T. and Folley, M. (2012). Nearshore oscillating wave surge converters and the development of Oyster. Philos. Trans. R. Soc. 370A, 345-364.
  19. Yu, X.P. (1995). Diffraction of water waves by porous breakwaters. J. Waterway, Port, Coastal and Ocean Engineering, 121(6), 275-282. https://doi.org/10.1061/(ASCE)0733-950X(1995)121:6(275)