• Title/Summary/Keyword: 파랑에너지 추출

Search Result 18, Processing Time 0.023 seconds

Block and Extraction of Wave Energy Using a Rolling Porous Pendulum Plate (횡 방향으로 운동하는 투과성 진자판을 이용한 파랑에너지 차단과 추출)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.180-190
    • /
    • 2018
  • The preliminary study was carried out to utilize the rolling porous pendulum plate as a hybrid system combining blocking and extracting of wave energy. The Galerkin method suggested by Porter and Evans (1995) was used to solve the diffraction and radiation problems to obtain reflection and transmission coefficient, roll displacement, extracted power. The Galerkin method provides better convergence than the matched eigenfunction expansion method (MEEM), which improves the accuracy of the analytical solution even if the CPU time is shorter. The porous plate can not be said to be more effective than the impermeable plate in terms of wave energy extraction and wave blocking, but it has the advantage of reducing the wave load and exchanging seawater.

Latching Control Technology for Improvement of Extracted Power from Wave Energy Converter (파력발전기 추출파워 향상을 위한 래칭 제어기법)

  • Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.282-290
    • /
    • 2015
  • In this study, a latching control technology, proposed by Sheng et al.(2015), was applied in order to maximize the extraction efficiency of WEC (Wave Energy Converter), which is the heaving buoy coupled with linear electric generator. The latching control is the phase-control technique for improving the wave energy conversion with appropriate latching duration of keeping the buoy fixed. From the time-domain analysis in regular waves, the latching control technology can significantly improve the heave velocity and extracted power, even though the resonance condition is not satisfied. By using the latching control technology, the draft of buoy as well as the required PTO damping force can be significantly reduced along with increased extracted power, which is a big advantage in manufacturing the WEC.

An Overview of Marine Renewable Energy (해양 신재생에너지의 고찰)

  • Kim, Young C.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.433-438
    • /
    • 2013
  • With the prospect of an increasing shortage of energy resources, there has been a growing interest in renewable alternative sources of energy. An increasing effort is being directed towards resolving the problems of extracting energy from the world's oceans, as they represent a vast potential source of renewable energy. This paper summarizes the extraction and conversion techniques of the ocean's energy resources, namely, energy derived from the ocean waves, tides, thermal gradients, and currents. For each energy extraction and conversion technique, case studies are discussed.

Estimation of Wave Energy Extraction Efficiency for a Compact Array System of Small Buoys (밀집 배열 부이시스템의 파랑에너지 추출 효율 추정)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • A compact array system of small buoys is used for wave energy extraction. To evaluate the performance of this system, hydrodynamic analysis is carried out in regular waves using the higher order boundary element method. The motion response of each buoy is calculated considering hydrodynamic interactions caused by other buoys. The effect of energy extraction device is modeled as a linear damping load. The efficiencies of energy conversion are compared using the various sizes and arrangements of the array system and the damping coefficients for energy extraction. The increase in size or the packing ratio of the system gives better efficiency. However, the wave condition and the cost for the system should be considered to optimize performance from the perspective of engineering and economics. The proposed nondimensionalized damping coefficient for energy extraction is 0.1~0.5.

Design of Wave Energy Extractor with a Linear Electric Generator -Part I. Design of a Wave Power Buoy (선형발전기가 탑재된 파랑에너지 추출장치 설계 -I. 파력 부이 설계)

  • Kim, Jeong Rok;Bae, Yoon Hyeok;Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • Design procedure of WEC (wave energy converter) using the heaving motion of a floating cylinder-type buoy coupled with LEG (linear electric generator) system is introduced. It is seen that the maximum power can actually be obtained at the optimal conditions ($c_{PTO}=b_T$, ${\omega}={\omega}_N$). Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO (power take off), which includes the intentional mismatching with the heave natural frequency, which is 15% higher value than the peak frequency of input velocity spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the corresponding draft as well as the required PTO damping value is significantly reduced, which is a big advantage in manufacturing the WEC with practical LEG (linear electric generator) system.

Latching Control Strategy for Improvement Wave Energy Conversion in Irregular Waves (불규칙파중 파랑에너지 변환효율 향상을 위한 래칭 제어전략)

  • Cho, Il Hyoung;Kim, Jeong Rok;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.291-297
    • /
    • 2015
  • The wave spectrum was generated from wave data measured at the Chagwi-do site in Jeju, where a 10MW class floating wave-offshore wind hybrid power generation system will be installed. The latching control technology (Sheng et al.[2015]) was applied in order to improve the extracted power from WEC (Wave Energy Converter), which is heaving in corresponding irregular waves. The peak period as a representative value of irregular waves was used when we determined the latching duration. From the numerical results in the time-domain analysis, the latching control technology can significantly improve the extracted power about 50%.

Performance Analysis of Wave Energy Converter Using a Submerged Pendulum Plate (몰수형 진자판을 이용한 파력발전장치의 성능해석)

  • Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The parametric study was performed for performance enhancement of wave energy converter(WEC) using a submerged pendulum plate. The wave exciting moment and hydrodynamic moment were obtained by means of eigenfunction expansion method based on the linear potential theory, and then the roll response of a pendulum plate and time averaged extracted power were investigated. The optimal PTO damping coefficient was suggested to give optimal extracted power. The peak value of optimal extracted power occurs at the resonant frequency. The resonant peak and it's width increase, as the height and thickness of a pendulum plate increase. The mooring line installed at the end of the pendulum plate is effective for extracting wave energy because it can not only induce the resonance with the waves of the installation site but also increase the restoring moment in case of PTO-on. The WEC using a rolling pendulum plate suitable for the shallow water acts as breakwater as well as energy extraction device.

Characteristics of Wave Response in a 'Y' Shape Water Channel Resonator Using Resonance of Internal Fluid (내부유체 공진을 이용한 'Y'자 수로형 공명구조물내 파도응답 특성)

  • Kim, Jeongrok;Cho, Il Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.170-179
    • /
    • 2019
  • In this study, the wave responses in a 'Y'shape water channel resonator for amplifying wave energy of a low density has been investigated. A water channel resonator is composed of the long channel and wave guider installed at the entrance. If the period of the incident waves coincides with the natural period of the fluid in a water channel resonator, resonance occurs and the internal fluid amplifies highly to a standing wave form. In order to analyze the wave response in a water channel resonator, we used the matched asymptotic expansion method and boundary element method. The both results were in good agreement with the results of the model test carried out in the two-dimensional wave tank of Jeju National University. Wave guider has an optimum length and installation angle according to the period of the incident wave, and especially effective in enhancing the amplification factor in a period range deviated from the resonance period. It is expected that the wave energy can be effectively extracted by placing the point absorber wave energy converter at the position of anti-node where the maximum wave height is formed by the internal fluid resonance.

Wave-Energy Extraction by a Compact Circular Array of Buoys (원형으로 배열된 다수 부이에 의한 파랑에너지 추출)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • The wave power, extracted from a circular array of small power buoys, is investigated under the potential theory. It is assumed that the buoy's radius, the draft, and the separation distance are much smaller than the water depth, the wave length, and the radius of a circular deployment area. The boundary value problem involving the macro-scale boundary condition on the mean surface covered by buoys is solved using the eigenfunction expansion method. The capture width, which is defined as the ratio of the extracted power to the wave power per unit length of the incident wave crest, is assessed for various combinations of packing ratio, radius of a circular array, and PTO damping coefficient. It is found that the circular array deployment is more effective in the viewpoint of efficiency than the single large buoy of the same total displaced volume.

Numerical Reproducibility of Wave Response for an Oscillating Wave Surge Converter Using Inverted Triangle Flap (역삼각형 플랩을 이용한 진자형 파력발전장치의 파랑응답에 대한 수치적 재현 가능성)

  • Kim, Tag-Gyeom;Kim, Do-Sam;Cho, Yong-Hwan;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.203-216
    • /
    • 2021
  • Analyzing various wave interactions with oscillating wave surge converters (OWSC) is essential because they must be operated efficiently under a wide range of wave conditions and designed to extract optimal wave energy. In the conceptual design and development stage of OWSC, numerical analysis can be a good alternative as a design tool. This study performed a numerical analysis on the behavioral characteristics of the inverted triangle flap against the incident waves using open source CFD to examine the essential behavioral attributes of OWSC. Specifically, the behavioral characteristics of the structure were studied by calculating the free water surface displacement and the flap rotation angle near the inverted triangular flap according to the change of the period under the regular wave conditions. By comparing and examining the numerical analysis results with the hydraulic model experiments, the validity of the analysis performed and the applicability in analyzing the wave-structure interactions related to OWSC was verified. The numerical analysis result confirmed that the hydrodynamic behavior characteristic due to the interactions of the wave and the inverted triangle flap was well reproduced.