DOI QR코드

DOI QR Code

국내 지하 석회석광산 갱도의 무지보 폭을 위한 제안

Proposal of the Unsupported Span of Openings in the Domestic Underground Limestone Mines

  • 선우춘 (한국지질자원연구원 전략연구본부, 심지층연구단)
  • SUNWOO, Choon (KIGAM(Korea Institute of Geoscience and Mineral Resources))
  • 투고 : 2018.07.11
  • 심사 : 2018.08.03
  • 발행 : 2018.08.31

초록

지하광산에서 갱도나 공동의 안정성은 생산성과 안전을 확보해야 하는 광산운영에 있어서 가장 중요한 관심사이다. 공동의 안정성에 영향을 주는 많은 암반조건 중 공동의 폭과 높이는 중요한 설계요소가 된다. 이 논문의 주된 목적은 암반분류법 중에 Q시스템을 이용하여 무지보로 유지할 수 있는 최대 무지보갱도 폭을 국내 석회석 광산현장에서 용이하게 결정하기 위한 것이다. 국내 석회석 광산에서 무지보갱도 규격에 대한 고찰을 위해 여러 석회석 지하광산 200여개의 측점에서 암반분류 측정이 이루어졌다. Q 시스템을 이용한 무지보 갱도폭을 결정하는 관계식과 안정성 그래프법을 이용한 최대 무지보 갱도 폭을 결정하는 관계식을 유도하여 비교검토가 이루어졌다. 또한 현장에서 사용하기 쉽도록 GSI와 RMR을 결합한 새로운 방식의 분류법을 제안한다.

The stability of openings in the underground mine is major concern in the operation of mines that must ensure productivity and safety. Among many rock conditions affecting cavities stability, the width and height of the opening is an important design factor. In this paper, we consider to determine the maximum unsupported span of a opening in a limestone mine by using the Q system among several rock classification schemes. In order to determine the span of the unsupported opening in the limestone mine, rock mass classifications were carried out at over 200 sites in the underground limestone mines. The relationships by using the Q system and the stability graph proposed by Mathews to determine the maximum span of the unsupported opening were derived and compared. We propose a new classification method that combines GSI and RMR rock classification systems to make it easy to use in a field.

키워드

참고문헌

  1. Barton, N., R. Lien, and J. Lunde, 1974, Engineering classification of rock masses for design of tunnel support, Rock Mech., Vol. 6, 183-236.
  2. Barton N., 2002, Some new Q-value correlations to assist in site characterization and tunnel design, Int. J. of Rock Mech. Min. Sci., Vol.39, No.2, 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4
  3. Bieniawski Z.T., 1973, Engineering classification of rock masses, Trans. S. Afr Inst. Civ. Eng., Vol.15, No.12, 335-344.
  4. Bieniawski, Z.T., 1989, Engineering Rock mass classifications, Published by John-Wiley & Sons, 251p.
  5. Esterhuizen G.S., A.T. Iannacchione, J.L. Ellenberger, D.R. Dolinar, 2006, Roof stability issues in underground limestone mines in the United States. In: Proceed. of the 25th Int. Conf. on ground control in mining, 354-361.
  6. Grimstad, E. and N. Barton, 1993, Updating of Q-system for NMT, Proc. Int. Symp. on sprayed concrete-Modern use of wet mix sprayed concrete for underground support, Fagernes, 1993, (Eds Kompen, Opsahl and Berg. Norwegian Concrete Association), Oslo, 46-66.
  7. Hoek E., 1994, Strength of rock and rock masses, ISRM News, Vol. 2, No.2, 4-16.
  8. Hoek E. and Brown E.T., 1997, Practical estimates of rock mass strength, Int. J. of Rock Mech. Min. Sci., Vol.34, No.8, 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  9. Laubscher, D.H., 1977, Geomechanics classification of jointed rock masses-Mining applications, Trans. Inst. Min. Metall., Vol. 86, A1-A7.
  10. Laubscher, D.H., 1984, Design aspects and effectiveness of support system in different mining conditions, Trans. Inst. Min. Metall., Vol. 93, A70-A81.
  11. Laubscher D.H. & Jakubec J., 2001, The MRMR rock mass classification for jointed rock masses, Underground Mining Methods: Engineering Fundamentals and Int. Case Studies, Society of Mining Engineers, AIME, New York, 474-481.
  12. Mathews, K.E. et al., 1981, Prediction of stable excavation spans for mining at depths below 1000m in hard rock, CAMMET, Report DSS Serial No. OSQ80-00081.
  13. Mikula P.A. and M.F. Lee, 2003, Confirmation of Q classification for use at Mt. Charlotte mine, In: Proceed. of the 1st Australian Ground Control in Mining Conference, Australia, Nov., 179-183.
  14. Nickson, S.D., 1992, Cable support guidelines for underground hard rock mine operations, M.App.Sc thesis, University of British Columbia.
  15. Peck W.A. and M.F. Lee, 2007, Application of the Q-system to Australian underground metal mines, Proceed. of Int. Workshop on Rock Mass Classification in Underground Mining, IC9498, NIOSH Publication, 129-140.
  16. Potvin, Y., M. Hudyma, H.D.S. Miller, 1988, Design guidelines for open stope supprot, CIM Bulletin, Vol. 82, No. 926, June, 53-62.
  17. Rao K.U.M., C. Sunwoo, S.K. Chung, S.O. Choi and Y.S. Jeon, 2003, The Suggestion of rock mass classification systems for stability of underground limestone mines-A case study, Tunnel & Underground space, J. Korean Society for Rock Mechanics, Vol.13, No.5, 421-433.
  18. Steward, S.B.V. and W.W. Forsyth, 1995, The Mathews method for open stope design, CIM Bulletin, vol. 88, no. 992, 45-53.
  19. Sunwoo, C., Hwang, S.H., Chung, S.K., Lee, S.K. Han K.C., 2001, Correlation between the rock mass classification methods, J. Korea Geotechnical Society, Vol.17, No.4, 127-134.
  20. Sunwoo C., K.U.M. Rao, S.K. Chung, S.O. Choi and Y.S. Jeon, 2003, A study for optimum mine opening dimension of underground limestone mines by the rock mass classification, KIGAM Bulletin, Vol.7, No.4, 37-48.
  21. Sunwoo C. and Y.B. Jung, 2005, Stability assessment of underground limestone mine openings by stability graph method, Tunnel & Underground space, J. Korean Society for Rock Mechanics, Vol.15, No.5, 369-377.