DOI QR코드

DOI QR Code

대단면 지하광산 갱도내 뒷채움 작업장 가스유출 및 확산제어 통기방안 연구

A Study on the Ventilation Schemes for Gas Leakage and Dispersion Controlling at the Backfilled Working Face in Large-Opening Underground Mine

  • Nguyen, Vanduc (Department of Energy and Mineral Resources Engineering, Dong - A University) ;
  • Lee, Changwoo (Department of Energy and Mineral Resources Engineering, Dong - A University)
  • 투고 : 2018.08.07
  • 심사 : 2018.08.27
  • 발행 : 2018.08.31

초록

뒷채움한 작업장의 공기질은 채움재의 양생기간 및 이후에 걸쳐 현저히 악화된다. 복합탄산염 기반의 채움재로 뒷채움한 채굴적으로부터 장기간에 걸친 NH3 및 CO2의 유출은 작업공간 내부에서 뿐만 아니라 지표상에서도 관찰된다. 가행광산에서는 가스의 유출은 작업환경을 급격히 악화시키므로 오염된 공간을 희석 시키기 위한 충분한 양의 통기량의 공급, 그리고 유해 가스 유출과 확산을 제어하기 위한 통기방안의 연구가 필요하다. 본 연구는 채움공간내 가스제어를 위한 압력균형 통기기술의 적용성 연구를 목적으로 한다.

The air quality near the backfilled site area is significantly deteriorated during and even after the curing period of the backfill materials. Hazardous gases such as NH3 and CO2 may leak out prolongedly from the mined-out sites backfilled with the composite carbonate-based material; leakage can be observed at the underground working sites as well as on the surface. At operating mines, underground gas leakage will severely aggravate the workplace environment. The ventilation schemes should supply sufficient air to dilute the contaminated air, and control the toxic gas leakage and dispersion. This study shows the applicability of pressurization ventilation system to control gas leakage and dispersion at the backfilled underground mine site.

키워드

참고문헌

  1. ANSYS, Inc., 2018, FLUENT User's Guide, Version 17.0, Canonsburg, PA, USA: ANSYS, Inc.
  2. British Standards. BS EN 12101-6:2005 smoke and heat control systems. Specification for pressure differential systems. BSI; 2005.
  3. BS 5588, Part 4, 2016, Fire precautions in the design, construction and use of buildings Part 4: Code of practice for smoke control using pressure differentials.
  4. Budnick, E.K. and Klote, J.H., 1987, November. The Capabilities of Smoke Control: Part II-System Performance and Stairwell Pressurization. In NFPA Meeting.
  5. Haghighat, A., 2014. Analysis of a ventilation network in a multiple fans limestone mine. Missouri University of Science and Technology.
  6. Jo, J.H., Lim, J.H., Song, S.Y., Yeo, M.S. and Kim, K.W., 2007. Characteristics of pressure distribution and solution to the problems caused by stack effect in high-rise residential buildings. Building and Environment, 42(1), pp. 263-277. https://doi.org/10.1016/j.buildenv.2005.07.002
  7. Lay, S., 2014. Pressurization systems do not work & present a risk to life safety. Case Studies in Fire Safety, 1, pp. 13-17. https://doi.org/10.1016/j.csfs.2013.12.001
  8. Li, M., Gao, Z., Ji, J. and Li, K., 2018. Modeling of positive pressure ventilation to prevent smoke spreading in sprinklered high-rise buildings. Fire Safety Journal, 95, pp. 87-100. https://doi.org/10.1016/j.firesaf.2017.11.004
  9. Tamura, G.T., 1989. Stair pressurization systems for smoke control: design considerations. National Research Council Canada, Institute for Research in Construction.
  10. Tamura, G.T., 1992. Assessment of stair pressurization systems for smoke control. ASHRAE, ATLANTA, GA(USA)., (6-72).
  11. Wang, Y. and Gao, F., 2004. Tests of Stairwell Pressurization Systems for Smoke Control in a High-Rise Building. ASHRAE Transactions, 110(1).