• Title/Summary/Keyword: Critical span

Search Result 256, Processing Time 0.019 seconds

Stability Assessment of Underground Limestone Mine Openings by Stability Graph Method (Stability graph method에 의한 석회석 지하채굴 공동의 안정성 평가)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.369-377
    • /
    • 2005
  • The stability of underground openings is a major concern for the safety and productivity of mining operations. Rock mass classification methods provide the basis of many empirical design methods as well as a basis for numerical analysis. Of the many factors which influence the stability of openings, the span of the opening for a given rock mass condition provides an important parameter of design. In this paper, the critical span curves proposed by Lang, the Mathews stability graph method and the modified critical span curve suggested by the authors have been assessed. The modified critical span curve was proposed by using Mathews stability graph method. The modified critical span curve by the author have been used to assess the stability of underground openings in several limestone mines.

Dominant failure modes identification and structural system reliability analysis for a long-span arch bridge

  • Gao, Xin;Li, Shunlong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.799-808
    • /
    • 2017
  • Failure of a redundant long-span bridge is often described by innumerable failure modes, which make the structural system reliability analysis become a computationally intractable work. In this paper, an innovative procedure is proposed to efficiently identify the dominant failure modes and quantify the structural reliability for a long-span bridge system. The procedure is programmed by ANSYS and MATLAB. Considering the correlation between failure paths, a new branch and bound operation criteria is applied to the traditional stage critical strength branch and bound algorithm. Computational effort can be saved by ignoring the redundant failure paths as early as possible. The reliability of dominant failure mode is computed by FORM, since the limit state function of failure mode can be expressed by the final stage critical strength. PNET method and FORM for system are suggested to be the suitable calculation method for the bridge system reliability. By applying the procedure to a CFST arch bridge, the proposed method is demonstrated suitable to the system reliability analysis for long-span bridge structure.

Span limit and parametric analysis of cable-stayed bridges

  • Zhao, Xinwei;Xiao, Rucheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • The span record of cable-stayed bridges has exceeded 1,000 m, which makes research on the maximum possible span length of cable-stayed bridges an important topic in the engineering community. In this paper, span limit is discussed from two perspectives: the theoretical span limit determined by the strength-to-density ratio of the cable and girder, and the engineering span limit, which depends not only on the strength-to-density ratio of materials but also on the actual loading conditions. Closed form equations of both theoretical and engineering span limits of cable-stayed bridges determined by the cable and girder are derived and a detailed parametric analysis is conducted to assess the engineering span limit under current technical conditions. The results show that the engineering span limit of cable-stayed bridges is about 2,200 m based on materials used available today. The girder is the critical member restricting further increase in the span length; its compressive stress is the limiting factor. Approaches to increasing the engineering span limit are also presented based on the analysis results.

Yaw wind effect on flutter instability of four typical bridge decks

  • Zhu, Le-Dong;Xu, You-Lin;Guo, Zhenshan;Chang, Guang-Zhao;Tan, Xiao
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.317-343
    • /
    • 2013
  • When evaluating flutter instability, it is often assumed that incident wind is normal to the longitudinal axis of a bridge and the flutter critical wind speed estimated from this direction is most unfavorable. However, the results obtained in this study via oblique sectional model tests of four typical types of bridge decks show that the lowest flutter critical wind speeds often occur in the yaw wind cases. The four types of bridge decks tested include a flat single-box deck, a flat ${\Pi}$-shaped thin-wall deck, a flat twin side-girder deck, and a truss-stiffened deck with and without a narrow central gap. The yaw wind effect could reduce the critical wind speed by about 6%, 2%, 8%, 7%, respectively, for the above four types of decks within a wind inclination angle range between $-3^{\circ}$ and $3^{\circ}$, and the yaw wind angles corresponding to the minimal critical wind speeds are between $4^{\circ}$ and $15^{\circ}$. It was also found that the flutter critical wind speed varies in an undulate manner with the increase of yaw angle, and the variation pattern is largely dependent on both deck shape and wind inclination angle. Therefore, the cosine rule based on the mean wind decomposition is generally inapplicable to the estimation of flutter critical wind speed of long-span bridges under skew winds. The unfavorable effect of yaw wind on the flutter instability of long-span bridges should be taken into consideration seriously in the future practice, especially for supper-long span bridges in strong wind regions.

Loosely supported multi-span tube damping according to the support clearance (지지점 간극을 갖는 다점지지 관의 지지점 간극 크기에 따른 감쇠특성 비교)

  • Lee, Kanghee;Kang, Heungseok;Shin, Changhwan;Kim, Jaeyong;Lee, Chiyoung;Park, Taejung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.402-403
    • /
    • 2014
  • Damping of multi-span tube with loose supports according to the finite support clearances is investigated through the experimental modal analysis. Loose intermediate support leads to strong nonlinearity in tube dynamics, provides statistical nature, and increases tube damping through impacting and friction at the supports. Fraction of critical damping was estimated by the modal curve fitting to parameter estimation from the measured frequency response functions. Magnitude of random excitation force, which can reproduce the in-situ excitation in operating environment, was maintained as constant value with a fine tolerance during vibration testing. Range of input force was carefully selected to cover from the low magnitude excitation for linearly behaved tube motion to high magnitude of force for nonlinearly-behaved tube motion. Estimated critical damping ratio shows scatters in data and tends to increase as the magnitude of rising force and decrease with upward frequency variation. Larger size of support gap increases multi-span tube damping for high magnitude of excitation.

  • PDF

Aerodynamic shape optimization emphasizing static stability for a super-long-span cable-stayed bridge with a central-slotted box deck

  • Ledong, Zhu;Cheng, Qian;Yikai, Shen;Qing, Zhu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.337-351
    • /
    • 2022
  • As central-slotted box decks usually have excellent flutter performance, studies on this type of deck mostly focus on the vortex-induced vibration (VIV) control. Yet with the increasing span lengths, cable-supported bridges may have critical wind speeds of wind-induced static instability lower than that of the flutter. This is especially likely for bridges with a central-slotted box deck. As a result, the overall aerodynamic performance of such a bridge will depend on its wind-induced static stability. Taking a 1400 m-main-span cable-stayed bridge as an example, this study investigates the influence of a series of deck shape parameters on both static and flutter instabilities. Some crucial shape parameters, like the height ratio of wind fairing and the angle of the inner-lower web, show opposite influences on the two kinds of instabilities. The aerodynamic shape optimization conducted for both static and flutter instabilities on the deck based on parameter-sensitivity studies raises the static critical wind speed by about 10%, and the overall critical wind speed by about 8%. Effective VIV countermeasures for this type of bridge deck have also been proposed.

Effect of Nonionic Surfactant Solutions on Wetting and Absorbancy of PET Fabric 1. Mixtures and Dilutions of Span 20 and Tween 20 (비이온계 계면활성제 수용액이 PET직물의 습윤특성에 미치는 영향 제1보 : Span 20과 Tween 20의 혼합계와 희석계)

  • 김천희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.9_10
    • /
    • pp.1153-1159
    • /
    • 2003
  • The effects of changing aqueous solution properties by nonionic surfactants on wetting behavior and water retention properies of hydrophobic PET (polyethylene terephthalate) fabric were reported. The aqueous solution properties were diversified by mixing and diluting two nonionic surfactants, i.e., sorbitan monolaurate (Span 20) and polyoxyethylene(20) sorbitan monolaurate (Tween 20). The surface wetting properties ($cos{\theta}$) of PET fabric were greatly improved by adding $10^{-1}g/dl$ Tween 20 and further improved by mixing Span 20 to the system. The water retention properties (W) of PET fabric were also greatly increased by addition of $10^{-1}g/dl$ Tween 20. In diluted surfactant systems, the $cos{\theta}'s$ were increased with decreasing surface tension of aqueous liquids. The ratios of aqueous liquid retained in the pore structure to liquid retention capacity (W/H) were also increased with decreasing surface tension, however, W/H values were dramatically increased right after critical micelle concentration (cmc). The existence of micelles was important for the retention of aqueous liquids in the fabric. The critical surface tension of PET fabric used was found to be 28.7dyne/cm.

The influence of vehicles on the flutter stability of a long-span suspension bridge

  • Han, Yan;Liu, Shuqian;Cai, C.S.;Zhang, Jianren;Chen, Suren;He, Xuhui
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.275-292
    • /
    • 2015
  • The presence of traffic on a slender long-span bridge deck will modify the cross-section profile of the bridge, which may influence the flutter derivatives and in turn, the critical flutter wind velocity of the bridge. Studies on the influence of vehicles on the flutter derivatives and the critical flutter wind velocity of bridges are rather rare as compared to the investigations on the coupled buffeting vibration of the wind-vehicle-bridge system. A typical streamlined cross-section for long-span bridges is adopted for both experimental and analytical studies. The scaled bridge section model with vehicle models distributed on the bridge deck considering different traffic flow scenarios has been tested in the wind tunnel. The flutter derivatives of the modified bridge cross section have been identified using forced vibration method and the results suggest that the influence of vehicles on the flutter derivatives of the typical streamlined cross-section cannot be ignored. Based on the identified flutter derivatives, the influence of vehicles on the flutter stability of the bridge is investigated. The results show that the effect of vehicles on the flutter wind velocity is obvious.

Study of central buckle effects on flutter of long-span suspension bridges

  • Han, Yan;Li, Kai;Cai, C.S.
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.403-418
    • /
    • 2020
  • To investigate the effects of central buckles on the dynamic behavior and flutter stability of long-span suspension bridges, four different connection options between the main cable and the girder near the mid-span position of the Aizhai Bridge were studied. Based on the flutter derivatives obtained from wind tunnel tests, formulations of self-excited forces in the time domain were obtained using a nonlinear least square fitting method and a time-domain flutter analysis was realized. Subsequently, the influences of the central buckles on the critical flutter velocity, flutter frequency, and three-dimensional flutter states of the bridge were investigated. The results show that the central buckles can significantly increase the frequency of the longitudinal floating mode of the bridge and have greater influence on the frequencies of the asymmetric lateral bending mode and asymmetric torsion mode than on that of the symmetric ones. As such, the central buckles have small impact on the critical flutter velocity due to that the flutter mode of the Aizhai Bridge was essentially the symmetric torsion mode coupled with the symmetric vertical mode. However, the central buckles have certain impact on the flutter mode and the three-dimensional flutter states of the bridge. In addition, it is found that the phenomenon of complex beat vibrations (called intermittent flutter phenomenon) appeared in the flutter state of the bridge when the structural damping is 0 or very low.

Parametric seismic evaluation of highway overpass bridges in moderate seismic areas

  • Simon, Jozsef;Vigh, Gergely L.
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.375-388
    • /
    • 2017
  • Prior to modern seismic provisions, several bridges were not designed for seismic actions in moderate seismic areas. Precast multi-girder and slab bridges are typical highway overpass structures; they have a significant contribution to national bridge stocks. Since the seismic behavior is questionable, a preliminary parametric study is conducted to determine critical configurations and components. The results indicate that the behavior of the abutments, backfill soil, superstructure and foundation is normally satisfactory; however, the superstructure-abutment joints are critical for both single- and multi-span bridges, while the piers are also critical for longer multi-span configurations. The parametric results provide a solid basis both for detailed seismic assessment and development of design concepts of newly built structures in moderate seismic zones.