DOI QR코드

DOI QR Code

열가소성 탄성중합체인 PP/SEBS 혼합 연구

A research of thermoplastic elastomer PP(Poly Propylene)/SEBS(Styrene Ethylene Butylene Styrene) blends

  • 한현각 (순천향대학교 나노화학공학과)
  • Han, Hyun Kak (Department of Chemical Engineering, Soonchunhyang University)
  • 투고 : 2018.06.14
  • 심사 : 2018.08.03
  • 발행 : 2018.08.31

초록

고분자 단독으로는 얻을 수 없는 다양한 물성을 얻기 위하여 두 가지 이상의 고분자를 블렌드하는 기법을 많이 사용하고 있다. 폴리올레핀계 TPE(Thermoplastic Elastomer)는 디스플레이, 자동차, 가전제품 등에 널리 사용되고 있다. 소비자는 고감성이고 고급화된 자동차 내장부품을 요구한다. 높은 폼형성도와 흐름성이 있는 고분자소재 개발이 필요하다. 내부에 폼층이 있는 TPE은 좋은 고분자소재이다. 두 종류의 TPE 소재를 개발하였다. 첫번째 소재는 Homo-PP(PolyPropylelne)에 SEBS/Oil을 혼합하였고, 두 번째 소재는 Co-PP와 SEBS/Oil을 혼합하였다. 혼합온도는 $180^{\circ}C$, $190^{\circ}C$. $260^{\circ}C$(두번째 소재), 혼합속도는 50rpm, 혼합시간은 5분이다. TPE의 MI(Melt Index)는 PP의 MI에 영향이 있고, 혼합온도의 영향은 미미하였다. 경도와 인장탄성률은 PP의 MI와 혼합온도의 영향은 적었으나, SEBS/Oil의 비율이 높아지면 낮아졌다. 소프트터치감은 SEBS/Oil의 비율이 증가하면 증대하였다. TPE릉 자일렌으로 SEBS/Oil 층을 녹여내어 IPN(Interpenentration polymer network) 구조를 확인할 수 있었으며, Strain-harding 현상도 확인하였다. 제조한 TPE가 고무현상을 보이고, 생성된 closed cell이 안정한 상태임을 알 수 있다.

New physical properties of polymer materials were obtained by blending two or three different type of polymers. TPE is used widely in the display, automotive and electronics industries. Consumers have sought emotionally more sensitive and advanced interior automotive parts. A polymer with high foamibility (Ed note: Please check this.) and flowability would be more plausible. TPE composed of foam is a good polymer material to satisfy these trends. In this research, two different TPE were tested, focusing on foamibility and flowability. Two type of TPE were prepared. The first was blended Homo-PP, oil and SEBS. The second was Co-PP, oil and SEBS. The blending temperatures were $180^{\circ}C$, $190^{\circ}C$, and $260^{\circ}C$(second one). The blending speed was 50rpm and blending time was 5 min. The MI of the blended material was affected by the MI of PP and not affected by the blending temperature. The hardness and tensile elasticity were less affected by the MI of PP and blending temperature. The hardness and tensile elasticity were lower at a higher SEBS/Oil content ratio. The soft touch feel was higher with high SEBS/Oil contents. The IPN (Interpenentration polymer network) structure was observed by dissolving the SEBS/Oil layer in xylene. Strain-hardening phenomena also was observed. TPE behaves in a rubber and foamed closed-cell improved its stability.

키워드

참고문헌

  1. B. Erman and J.E. Mark, In: J.E. Mark, B. Erman and FR Eirich, editors. science and technology of rubber. 2nd ed. San Diego (CA): Academic Press; 1994.
  2. A.N. Gent, In: J.E. Mark, B. Erman and ER Eirich, editors. Science and technology of rubber. 2nd ed. San Diego (CA): Academic Press; 1994. p. 1.
  3. M. D. Snyder, "Elastic linear copolyesters", US patent 2,623,031, du Pont de Nemours & Co., 1952.
  4. C. S. Schollenberger, "Simulated vulcanisates of polyurethane elastomers", US patent 2,871,218, B F Goodrich, 1959.
  5. C.S. Schollenberge. H. Scott, GR Moore. Paper at the Rubber Division Meeting; September 13, 1957; Rubber Chem. Technol. 1962;35;742. https://doi.org/10.5254/1.3539953
  6. CS Schollenberge. US Patent 2,871,218 (1959, to B.F. Goodrich Co.)
  7. W.P. Gergen. In: N.R. Legge, G. Holden, and H.E. Schroede, editors. Thermoplastic elastomers-a-c omprehensive review. Munich: Hanser Publishers; 1987. p. 507 [chapter 14].
  8. D.J. George. Handbook of thermoplastic elastomers. Elsevier, 2014.
  9. J.P. Kirkpatrick and D.T. Preston, Elastomerics 1988;120(10):30.
  10. A.J. Tinker, R.D. Icenogle and I. Whittle, Paper no. 48, presented at the Rubber Division of ACS Meeting, Cincinnati, OH; October 1988.
  11. W.L. Semon, US Patent 1,929,453 (1933, to B.F. Goodrich Co.)
  12. K. Ziegler, H. Holzkamp and H. Breil, Angew. Chem., 67, 541, 1995. https://doi.org/10.1021/ac00099a010
  13. G. Natta, Makromol. Chem., 16, 213, 1995.
  14. K. Sheidl, Polypropylene 2000 Conference, Zurich, 2000.
  15. B. Ohlsson, H. Hassander, B. Tornell, "Blends and thermoplastic interpenetrating polymer networks of polypropylene and polystyrene-block-poly(ethylene-stat butylene)-block-polystyrene triblock copolymer. 1: Morphology and structure-related properties", Polymer Engineering and Science, Vol.36, No.4, pp.501-510, 1996. DOI: https://dx.doi.org/10.1002/pen.10436
  16. ASTM D1238-04 Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer1
  17. ASTM D412-06a Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers- Tension1
  18. S.H. Cho, Master's Thesis. "The study of Thermodynamic Elastomer PP/SEBS, Blends, Soonchunhyang Univ., 2017.
  19. J..W. Um, Master's Thesis., "A study on properties of Thermoplastic Elastomer(PP/SEBS) by content fo pp" Soonchunhyang Univ., 2017.
  20. Kresge EN. Rubber World 1993;208(2):31.
  21. A. K. Gupta and S. N. Purwar, J. Appl. Polyrn. Sci., 29, 1079, 1984. https://doi.org/10.1002/app.1984.070290406
  22. A. K. Gupta and S. N. Purwar, J. Appl. Polyrn. Sci., 29, 1595, 1984. https://doi.org/10.1002/app.1984.070290514
  23. P. H. Nam, P. Maiti, M. Okamoto, T. Kotako, T. Nakayama, M. Takada, M. Ohshima, A. Usuki, N. Hasegawa, H. Okamoto, "Foam processing and cellular structure of polypropylene/clay nanocomposites", Polymer Engineering and Science, Vol.42, No.9, pp.1907-1918, 2002. DOI: https://dx.doi.org/10.1002/pen.11083
  24. S.T. Lee, Foam Extrusion, Technomic Publishing Company, Inc., 2000.