DOI QR코드

DOI QR Code

석개재 지역 하부 막골층 탄산염암의 광물조성, 미세구조 및 지화학적 특성

Mineralogical, Micro-textural, and Geochemical Characteristics for the Carbonate Rocks of the Lower Makgol Formation in Seokgaejae Section

  • 박채원 (연세대학교 지구시스템과학과) ;
  • 김하 (연세대학교 지구시스템과학과) ;
  • 송윤구 (연세대학교 지구시스템과학과)
  • Park, Chaewon (Department of Earth System Sciences, Yonsei University) ;
  • Kim, Ha (Department of Earth System Sciences, Yonsei University) ;
  • Song, Yungoo (Department of Earth System Sciences, Yonsei University)
  • 투고 : 2018.06.15
  • 심사 : 2018.08.29
  • 발행 : 2018.08.28

초록

본 연구에서는 석개재 지역 하부 막골층 탄산염암을 대상으로 광물조성, 미세구조 및 지화학적 특성을 분석하고 퇴적 환경에 영향을 준 유체의 특성에 대해 고찰해보았다. X-선 회절을 이용한 광물 정량 분석, SEM-BSE를 이용한 미세구조 분석에 근거하여 막골층 최하부와 하부의 탄산염암 미세구조를 4가지 Type으로 분류하고, EPMA 및 LA-ICP-MS를 이용해 각 Type 내 탄산염광물을 대상으로 주원소 및 미량원소를 분석하여 비교하였다. 다양한 크기의 반자형에서 타형의 돌로마이트 결정이 치밀하게 맞물린 구조를 갖는 Type 1과 다양한 크기의 자형에서 반자형의 돌로마이트 결정이 치밀하게 맞물린 구조를 갖는 Type 2의 돌로마이트는 상대적으로 높은 Mg/Ca ratio, 평평한 기울기의 REE 패턴, 낮은 또는 중간 이하의 Fe 함량, 낮은 Mn 함량 특성을 가진다. 돌로마이트가 광범위하고 치밀하게 맞물린 구조로 나타나는 것은 고염수로부터 지속적인 Mg 유입의 가능성을 지시한다. 반면, 세립질의 자형에서 타형의 돌로마이트 결정이 산재된 특성을 보이는 Type 3와 다양한 크기의 자형에서 반자형의 돌로마이트 결정을 갖는 Type 4는 Type 1, 2에 비해 돌로마이트 결정의 미세구조가 덜 치밀하게 맞물린 형태를 가진다. 또한 상대적으로 낮은 Mg/Ca ratio, MREE가 부화된 패턴, 중간 이상의 또는 높은 Fe 및 Mn 함량 특성을 가진다. 부분적인 돌로마이트화와 덜 치밀하게 맞물린 구조가 관찰되는 것은 해수와 염수의 혼합수 환경에서 Mg의 제한적인 유입을 지시한다. 또한 Type 4에서 나타나는 철함유 광물과 돌로마이트 결정에서 관찰되는 재결정화와 상대적으로 높은 Fe, Mn 함량을 갖는 특성은 속성 유체의 영향과 아산화 환경에 노출되면서 돌로마이트가 재결정화 작용을 받았을 가능성을 제시한다. 막골층 최하부와 하부의 주구성광물인 돌로마이트와 방해석의 광물학적, 미세구조적, 지화학적 분석을 종합한 결과, 최하부는 고염분의 대규모 퇴적수 영향을 받았고 하부는 담수와 해수의 혼합수 환경에서 속성 유체 영향을 받았음을 뒷받침한다.

This study defines the mineralogical, micro-textural and geochemical characteristics for the carbonate rocks and discusses the fluids that have affected the depositional environment of the Lower Makgol Formation in Seokgaejae section. Based on analysis of X-ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-ray Spectrometry (SEM-EDS), Electron Probe Micro Analyzer-Wavelength Dispersive X-ray Spectrometry (EPMA-WDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), carbonate miorofacies in the basal and the lower members of the Makgol Formation are distinguished and classified into four types. Type 1 dolomite (xenotopic interlocking texture) and Type 2 dolomite (idiotopic interlocking texture) have relatively high Mg/Ca ratio, flat REE pattern, low Fe and Mn. Extensively interlocking textures in these dolomites indicate constant supply of Mg ion from hypersaline brine. Type 3 and Type 4 dolomite (scattered and loosely-aggregated texture) have relatively moderate Mg/Ca ratio, MREE enriched pattern, low to high Fe and Mn. These partial dolomitization indicate limited supply of Mg ion under the influx of meteoric water with seawater. Also, the evidence of Fe-bearing minerals, recrystallization and relatively high Fe and Mn in Type 4 indicates the influence of secondary diagenetic fluids under suboxic conditions. Integrating geochemical data with mineralogical and micro-textural evidence, the discrepancy between the basal and the lower members of the Makgol Formation indicates different sedimentary environment. It suggest that hypersaline brine have an influence on the basal member, while mixing meteoric water with seawater have an effect on the lower member of the Makgol Formation.

키워드

참고문헌

  1. Anderson, E.J. and Goodwin, R.W. (1990) The significance of metre-scale allocycles in the quest for a fundamental stratigraphic unit. Journal of Geological Society of London, v.147, p.507-518. https://doi.org/10.1144/gsjgs.147.3.0507
  2. Bau, M. and Moller, P. (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineralogy and Petrology, v.45(3-4), p.231-246. https://doi.org/10.1007/BF01163114
  3. Brand, U. and Veizer, J. (1980) Chemical diagenesis of a multicomponent carbonate system: 1, Trace elements. Journal of Sedimentary Petrology, v.50, p.1219-1236.
  4. Chakhmouradian, A.R., Reguir, E.P., Coueslan, C. and Yang, P. (2016) Calcite and dolomite in intrusive carbonatites : II. Trace-element variations. Mineralogy and Petrology, v.110, p.361-377. https://doi.org/10.1007/s00710-015-0392-4
  5. Cheong, C.H. (1969) Stratigraphy and paleontology of the Samcheog coalfield, Gangweondo, Korea (1). Journal of the Geological Society of Korea, v.5, p.13-56.
  6. Choi, D.K. (1998) The Yongwol Group (Cambrian-Ordovician) redefined: a proposal for the stratigraphic nomenclature of the Choson Supergroup. Geosciences Journal, v.2, p.220-234. https://doi.org/10.1007/BF02910166
  7. Choi, D.K., Chough, S.K., Kwon, Y.K. et al. (2004) Taebaek Group (Cambrian-Ordovician) in the Seokgaejae section, Taebaeksan Basin : a refined lower Paleozoic stratigraphy in Korea. Geosciences Journal, v.8, p.125-151. https://doi.org/10.1007/BF02910190
  8. Chough, S.K., Kwon, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and Sedimentary evolution of the Korean peninsula: a review and new view. Earth Science Reviews, v.52, p.175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  9. Chung, G.S., Paik, I.S. and Woo, K.S. (1993) The Origin of Dolomites in the Lower Ordovician Mungok Formation in the Yeongweol Area, Kangweondo, Korea. Journal of the Geological Society of Korea, v.29, p.1-14.
  10. Conliffe, J., Azmy, L., Knight, I. and Lavoiec, D. (2009) Dolomitization of the Lower Ordovician Watts Bight Formation of the St. George Group, western Newfoundland: evidence of hydrothermal fluid alteration. Canadian Journal of Earth Sciences, v.46, p.247-261. https://doi.org/10.1139/E09-019
  11. Dunham, J.B. and Olson, E.R. (1978) Diagenetic dolomite formation related to Paleozoic paleogeography of the Cordilleran miogeocline in Nevada. Geology, v.6(9), p.556-559. https://doi.org/10.1130/0091-7613(1978)6<556:DDFRTP>2.0.CO;2
  12. Eluik, L.S. (1978) The Abenaki Formation, Nova Scotia Shelf, Canada-A Depositional and Diagenetic Model for a Mesozoic Carbonate Platform. Bulletin of Canadian Petroleum Geology, v.26, p.424-514.
  13. Fischer, A.G. (1975) Tidal deposits, Dachstein Limestone of the North-Alpine Triassic. In: Ginsburg, R.N. (eds) Tidal Deposits. Springer, Berlin, Heidelberg, p.235-242.
  14. Frimmel, H.E. (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology, v.258(3-4), p.338-353. https://doi.org/10.1016/j.chemgeo.2008.10.033
  15. GICTR (Geological Investigation Corps of the Taebaegsan Region) (1962) Report on the Geology and Mineral Resources of the Taebaegsan Region. Geological Society of Korea, Seoul, p.89.
  16. Goodwin, R.W., Anderson, E.J., Goodman, W.M. and Saraka, L.J. (1986) Punctuated aggradational cycles: implications for stratigraphic analysis. Paleoceanography, v.1, p.417-429. https://doi.org/10.1029/PA001i004p00417
  17. Gregg, J.M. and Sibley, D.F. (1984) Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Petrology, v.54, p.908-931.
  18. Hardie, L.A. (1987) Dolomitization: a critical view of some current views. J. Sediment. Petrology, v.57, p.166-182. https://doi.org/10.1306/212F8AD5-2B24-11D7-8648000102C1865D
  19. Hass, D. and Demeny, A. (2002) Early dolomitization of Late Triassic platform carbonates in the Transdanubian Range (Hungary). Sedimentary Geology, v.151, p.225-242. https://doi.org/10.1016/S0037-0738(01)00259-7
  20. Hoffman, P. (1975) Shoaling-upward shale-to-dolomite cycles in the Rocknest Formation (Lower Proterozoic), Northwest Territories, Canada. In: Ginsburg, R.N. (eds), Tidal Deposits. Springer, Berlin, Heidelberg, p.257-265.
  21. Huaguo, W., Longbun, W., Haoru, C., Rongcai, Z., Lurui, D. and Yanan, L. (2014) Geochemical characteristics and diagenetic fluids of dolomite reservoirs in the Huanglong Formation, Eastern Sichuan Basin, China. Pet.Sci. v.11, p.52-66. https://doi.org/10.1007/s12182-014-0317-6
  22. Huang, S.J. (2010) Carbonate Diagenesis. Geological Publishing, p.29-44.
  23. Kobayashi, T. (1966) The Cambro-Ordovician formations and faunas of South Korea, Part X, Stratigraphy of the Chosen Group in Korea and South Manchuria and its relation to the Cambro-Ordovician formations and faunas of other areas, Section A, The Chosen Group of South Korea. Journal of the Faculty of Science (University of Tokyo), Section II, v.16, p.1-84.
  24. Kucera, J., Cempirek, J., Dolnicek, Z., Muchez, P. and Prochaska, W. (2009) Rare earth elements and yttrium geochemistry of dolomite from post-Variscan veintype mineralization of the Nizky Jesenik and Upper Silesian Basins, Czech Republic. Journal of Geochemical Exploration, v.103, p.69-79. https://doi.org/10.1016/j.gexplo.2009.08.001
  25. Luders, V., Moller, P. and Dulski, P. (1993), REE fractionation in carbonates and fluorites. Monogr. Ser. Mineral Deposits, v.30(9), p.133-150.
  26. Machel, H.G. (2004) Concepts and models of dolomitization: a critical reappraisal. In: Braithwaite, C.J.R., Rizzi, G., Darke, G. (Eds.) The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society Special Publication, v.35, p.7-63.
  27. McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of the provenance and sedimentary process. Geochemistry and Mineralogy of Rare Earth Elements, v.21, p.169-200.
  28. Morford, J.L. and Emerson, S. (1999) The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, v.63(11-12), p.1735-1750. https://doi.org/10.1016/S0016-7037(99)00126-X
  29. Morgan, J.W. and Wandless, G.A. (1980) Rare earth elements in some hydrothermal minerals: Evidence of crystallographic control. Geochimica et Cosmochimica Acta, v.44(7), p.973-980. https://doi.org/10.1016/0016-7037(80)90286-0
  30. Morrow, D.W. (1982) Diagenesis 2. Dolomite-Part 2 Dolomitization Models and Ancient Dolostones. Geological Association of Canada, v.9, p.96-107.
  31. Mozley, P.S. (1989) Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology, v.17(8), p.704-706. https://doi.org/10.1130/0091-7613(1989)017<0704:RBDEAT>2.3.CO;2
  32. Murray, R.C. and Lucia, F.J. (1967) Cause and Control of Dolomite Distribution by Rock Selectivity. GSA Bulletin, v.78(1), p.21-36. https://doi.org/10.1130/0016-7606(1967)78[21:CACODD]2.0.CO;2
  33. Olanipekun, B.J. and Azmy, K. (2017) In situ characterization of dolomite crystals: Evaluation of dolomitization process and its effect on zoning. Sedimentology, p.1-23.
  34. Paik, I.S. (1985) Evaporite mineral casts in the Maggol Formation (Ordovician), Jangseong, Kangweondo. Journal of Geologial Society of Korea, v.21, p.219-226.
  35. Paik. I.S. (1986) Dolomitization of the Middle Ordovician Maggol Formation in Janseong area, Gangweondo, Korea. Journal of the Geological Society of Korea, v.22, p.333-346.
  36. Paik, I.S. (1987) Depositional environments of the Middle Ordovician Maggol Foremation, southern part of the Baegunsan Syncline area. Journal of Geological Society of Korea, v.23, p.360-373.
  37. Pearce, N.J.G., Perkins W.T., Westgate, J.A., Gorton, P.M., Jackson, S.E., Neal, C.R. and Chenery, P.S. (1997) A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandard and Geoanalytical research, v.21(1), p.115-144. https://doi.org/10.1111/j.1751-908X.1997.tb00538.x
  38. Pratt, B.R., James, N.P. and Cowan, C.A. (1992) Peritidal carbonates. In: Walker, R.G. and James, N.P. (eds.) Facies Models response to sea level change. Geological Association of Canada, p.303-322.
  39. Reinhold, C. (1998) Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany. Sedimentary Geology, v.121, p.71-95. https://doi.org/10.1016/S0037-0738(98)00077-3
  40. Sears, S.O. and Lucia, F.J. (1980) Dolomitization of northern Michigan Niagara reefs by brine refluxion and freshwater/seawater mixing: in Zenger, D.H., Dunham J.B. and Ethington, R.L. eds., Concepts and Models of Dolomitization. Soc. Econ. Paleontol. Mineral. Spec. Publication, v.28, p.215-235.
  41. Sena, C.M., John, C.M., Jourdan, A., Vandeginste, V. and Manning, C. (2014) Dolomitization of lower Cretaceous peritidal carbonates by modified seawater: constrains from clumped isotopic paleothermometry, elemental chemistry, and strontium isotopes. Journal of Sedimentary Research, v.84, p.552-566. https://doi.org/10.2110/jsr.2014.45
  42. Sibley, D.F. and Gregg, J.M. (1987) Classification of dolomite rock textures. Journal of Sedimentary Petrology, v.57, p. 967-975.
  43. Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Oxford (Blackwell Scientific).
  44. Tucker, M.E. and Wright, V.P. (1990) Carbonate sedimentology. Blackwell, Oxford.
  45. Vandeginste, V. and John C.M. (2012) Influence of climate and dolomite composition on dedolomitization: insights from a multi-proxy study in the central Oman Mountains. Journal of Sedimentary Research, v.82(3), p.177-195. https://doi.org/10.2110/jsr.2012.19
  46. Warren, J. (2000) Dolomite: Occurrence, Evolution and Economically Important Associations. Earth Science Reviews, v.52, p.1-81. https://doi.org/10.1016/S0012-8252(00)00022-2
  47. Wilson, J.G. (1975) Carbonate facies in geologic history. Springer Verlag, New York, N.Y., p.471.
  48. Wolfbauer, C.A. and Surdam, R.C. (1974) Origin of nonmarine dolomite in Eocene Lake Gosiute, Green River Basin, Wyoming. Geological Society of America Bulletin, v.85(11), p.1733-1740. https://doi.org/10.1130/0016-7606(1974)85<1733:OONDIE>2.0.CO;2
  49. Woo, K.S. (1999) Cyclic tidal successions of the Middle Ordovician Maggol Formation in the Taebaeg area, Kangwondo, Korea. Geosciences Journal, v.3, p.123-140. https://doi.org/10.1007/BF02910269
  50. Woo, K.S. and Choi, S.J. (1993) Diagenetic histories of the Yeongheung Formation near Machari area, Yeongweol, Kangweondo, Korea. Journal of the Geological Society of Korea, v.29, 450-463.
  51. Woo, K.S. and Moore, C.H. (1996) Burial dolomitization and dedolomitization of the late Cambrian Wagok Formation, Yeongweol, Korea. Carbonates Evaporites, v.11(2), p.104-112. https://doi.org/10.1007/BF03175789
  52. Woo, K.S. and Park, B.K. (1989) Depositional environments and diagenesis of the sedimentary rocks, Choseon Supergroup, Korea: past, present, and future; the state of the art. Journal of the Geological Society of Korea, v.25, p.347-363.
  53. Wright, V.P. (1984) Peritidal carbonate facies models: a review. Geological Journal, v.19, p.309-325.
  54. Ye, Q. and Mazzullo, S.J. (1993) Dolomitization of lower Permian platform facies, Wichita Formation, north platform, Midland basin, Texas. Carbonates and Evaporites, v.8(1), p.55-70. https://doi.org/10.1007/BF03175163
  55. Yoo, C.M. and Lee, Y.I. (1998) Origin and modification of early dolomites in cyclic shallow platform carbonates, Yeongheung Formation (Middle Ordovician), Korea. Sedimentary Geology, v.118, p.141-157. https://doi.org/10.1016/S0037-0738(98)00010-4
  56. Yoo, C.M., Lee, Y.I. and Paik, I.S. (1994) Evidence for hypersaline conditions in the Middle Ordovician Yeongheung Formation, Korea. Journal of Geological Society of Korea, v.30, p.335-368.
  57. Young, H.R. and Greggs, R.G. (1975) Diagenesis in Lodgepole Limestones, Southwestern Manitoba. Bulletin of Canadian Petroleum Geology, v.23(2), p.201-223.
  58. Ziya, M.K. (2013) Origin of dolomite in the late Jurassic platform carbonates, Bolkar Mountains, Central Taurides, Turkey: petrographic and geochemical evidence. Chemie der Erde, v.73, 383-398. https://doi.org/10.1016/j.chemer.2012.11.001
  59. Zhang, W., Guan, P., Jian, X., Feng, F. and Zou, C. (2014) In situ geochemistry of Lower Paleozoic dolomites in the northwestern Tarim basin: Implications for the nature, origin, and evolution of diagenetic fluids. Geochemistry, Geophysics, Geosystems, v.15, p.2744-2764. https://doi.org/10.1002/2013GC005194
  60. Zhang, X., Hu, W., Jin, Z., Zhang, J., Quian, Y., Zhu, J., Zhu, D., Wang, W. and Xie, X. (2008) REE compositions of Lower Ordovician dolomites in Central and North Tarim Basin, NW China: A potential REE proxy for ancient seawater. Acta Geologica Sinica, v.82(3), p.610-621.