DOI QR코드

DOI QR Code

Control of Microstructure on TiO2 Nanofibers for Photocatalytic Application

광촉매 응용을 위한 TiO2 나노 섬유의 미세구조 제어

  • Lee, Chang-Gyu (Department of Advanced Materials Engineering, Gangneung-Wonju National University) ;
  • Kim, Wan-Tae (Department of Advanced Materials Engineering, Gangneung-Wonju National University) ;
  • Na, Kyeong-Han (Department of Advanced Materials Engineering, Gangneung-Wonju National University) ;
  • Park, Dong-Cheol (Department of Advanced Materials Engineering, Gangneung-Wonju National University) ;
  • Yang, Wan-Hee (WITH M-TECH Co., Ltd.) ;
  • Choi, Won-Youl (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
  • 이창규 (강릉원주대학교 신소재금속공학과) ;
  • 김완태 (강릉원주대학교 신소재금속공학과) ;
  • 나경한 (강릉원주대학교 신소재금속공학과) ;
  • 박동철 (강릉원주대학교 신소재금속공학과) ;
  • 양완희 ((주)위드엠텍) ;
  • 최원열 (강릉원주대학교 신소재금속공학과)
  • Received : 2018.07.04
  • Accepted : 2018.07.24
  • Published : 2018.09.01

Abstract

$TiO_2$ has excellent photocatalytic properties and several studies have reported the increase in its specific surface area. The structure of $TiO_2$ nanofibers indicates promising improved photocatalytic properties and these nanofibers can thus potentially be applied in air pollution sensors and pollutant removal filters. In this study, a $TiO_2$ nanofiber was fabricated by the electrospinning method. The fabrication processing factors such as the applied voltage, the distance between nozzle and collector, and the inflow rate of solution were controlled. The precursor was titanium (IV) isopropoxide and as-spun $TiO_2$ nanofibers were heated at $450^{\circ}C$ for 2 h to obtain an anatase crystalline structure. The microstructure was analyzed using field emission scanning electron microscope (FE-SEM) and X-ray diffraction analysis (XRD). The anatase phase was observed in the $TiO_2$ nanofibers after heat treatment. The diameter of $TiO_2$ nanofibers increased with the flow rate, but decreased with decreasing applied voltage and nozzle to collector distance. The diameter of $TiO_2$ nanofibers was controlled in the range of 364 nm to 660 nm. These nanofibers are expected to be very useful in photocatalytic applications.

Keywords

References

  1. I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, and H. L. Tuller, Nano Lett., 6, 2009 (2006). [DOI: https://doi.org/10.1021/nl061197h]
  2. H. Li, W. Zhang, B. Li, and W. Pan, J. Am. Ceram. Soc., 93, 2503 (2010). [DOI: https://doi.org/10.1111/j.1551-2916.2010.03841.x]
  3. J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995). [DOI: https://doi.org/10.1016/0304-3886(95)00041-8]
  4. K. H. Na, W. T. Kim, D. C. Park, H. G. Shin, S. H. Lee, J. Park, T. H. Song, and W. Y. Choi, Thin Solid Films, 660, 358, (2018). [DOI: https://doi.org/10.1016/j.tsf.2018.06.018]
  5. Q. Fan and M. S. Whittingham, Electrochem. Solid-State Lett., 10, A48 (2007). [DOI: https://doi.org/10.1149/1.2422749]
  6. Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. MacDiarmid, and Y. Wei, J. Am. Chem. Soc., 130, 5036 (2008). [DOI: https://doi.org/10.1021/ja800176s]
  7. S. M. Park, S. Eom, D. Choi, S. J. Han, S. J. Park, and D. S. Kim, Chem. Eng. J., 335, 712 (2018). [DOI: https://doi.org/10.1016/j.cej.2017.11.018]
  8. T. H. Hwang, W. T. Kim, and W. Y. Choi, J. Nanosci. Nanotechnol., 17, 4812 (2017). [DOI: https://doi.org/10.1166/jnn.2017.14275]
  9. Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, Adv. Mater., 12, 1938 (2000). [DOI: https://doi.org/10.1002/1521-4095 (200012)12:24<1938::AID-ADMA1938>3.0.CO;2-4]
  10. R. Ciriminna, A. Fidalgo, V. Pandarus, F. Beland, L. M. Ilharco, and M. Pagliaro, Chem. Rev., 113, 6592 (2013). [DOI: https://doi.org/10.1021/cr300399c]
  11. S. Guo, R. Sivakumar, H. Kitazawa, and Y. Kagawa, J. Am. Ceram. Soc., 90, 1667 (2007). [DOI: https://doi.org/10.1111/j.1551-2916.2007.01636.x]
  12. A. C. Patel, S. Li, J. M. Yuan, and Y. Wei, Nano Lett., 6, 1042 (2006). [DOI: https://doi.org/10.1021/nl0604560]
  13. W. Han, Y. D. Wang, and Y. F. Zheng., Adv. Mat. Res., 79, 389 (2009). [DOI: https://doi.org/10.4028/www.scientific.net/AMR.79-82.389]
  14. R. Leary and A. Westwood, Carbon, 49, 741 (2011). [DOI: https://doi.org/10.1016/j.carbon.2010.10.010]
  15. M. Lubke, I. Johnson, N. M. Makwana, D. Brett, P. Shearing, Z. Liu, and J. A. Darr, J. Power Sources, 294, 94 (2015). [DOI: https://doi.org/10.1016/j.jpowsour.2015.06.039]
  16. J. A. Park, J. Moon, S. J. Lee, S. H. Kim, T. Zyung, and H. Y. Chu, Mater. Lett., 64, 255 (2010). [DOI: https://doi.org/10.1016/j.matlet.2009.10.052]
  17. H. Tang, F. Yan, Q. Tai, and H.L.W. Chan, Biosens. Bioelectron., 25, 1646 (2010). [DOI: https://doi.org/10.1016/j.bios.2009.11.027]
  18. Y. Yuan, Y. Zhao, H. Li, Y. Li, X. Gao, C. Zheng, and J. Zhang, J. Hazard. Mater., 227, 427 (2012). [DOI: https://doi.org/10.1016/j.jhazmat.2012.05.003]
  19. T. H. Hwang, W. T. Kim, and W. Y. Choi, J. Electron. Mater., 45, 3195 (2016). [DOI: https://doi.org/10.1007/s11664-016-4464-y]