References
- Bourguignon, L. Y., Peyrollier, K., Xia, W. and Gilad, E. (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat- 3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J. Biol. Chem. 283, 17635-17651. https://doi.org/10.1074/jbc.M800109200
- Chen, C., Zhao, S., Karnad, A. and Freeman, J. W. (2018) The biology and role of CD44 in cancer progression: therapeutic implications. J. Hematol. Oncol. 11, 64. https://doi.org/10.1186/s13045-018-0605-5
- Chen, Y., Fu, Z., Xu, S., Xu, Y. and Xu, P. (2014) The prognostic value of CD44 expression in gastric cancer: a meta-analysis. Biomed. Pharmacother. 68, 693-697. https://doi.org/10.1016/j.biopha.2014.08.001
- Cho, S. H., Park, Y. S., Kim, H. J., Kim, C. H., Lim, S. W., Huh, J. W., Lee, J. H. and Kim, H. R. (2012) CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. Int. J. Oncol. 41, 211-218.
- Guillemin, K. and Krasnow, M. A. (1997) The hypoxic response: huffing and HIFing. Cell 89, 9-12. https://doi.org/10.1016/S0092-8674(00)80176-2
- Huh, J. W., Kim, H. R., Kim, Y. J., Lee, J. H., Park, Y. S., Cho, S. H. and Joo, J. K. (2009) Expression of standard CD44 in human colorectal carcinoma: association with prognosis. Pathol. Int. 59, 241-246. https://doi.org/10.1111/j.1440-1827.2009.02357.x
- Kang, M. H., Choi, S. and Kim, B. H. (2017) Skin wound healing effects and action mechanism of acai berry water extracts. Toxicol. Res. 33, 149-156. https://doi.org/10.5487/TR.2017.33.2.149
- Karousou, E., Misra, S., Ghatak, S., Dobra, K., Gotte, M., Vigetti, D., Passi, A., Karamanos, N. K. and Skandalis, S. S. (2017) Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol. 59, 3-22. https://doi.org/10.1016/j.matbio.2016.10.001
- Kietzmann, T., Mennerich, D. and Dimova, E. Y. (2016) Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity. Front. Cell Dev. Biol. 4, 11.
- Kim, T. H., Hur, E. G., Kang, S. J., Kim, J. A., Thapa, D., Lee, Y. M., Ku, S. K., Jung, Y. and Kwak, M. K. (2011) NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Res. 71, 2260-2275. https://doi.org/10.1158/0008-5472.CAN-10-3007
- Krishnamachary, B., Penet, M. F., Nimmagadda, S., Mironchik, Y., Raman, V., Solaiyappan, M., Semenza, G. L., Pomper, M. G. and Bhujwalla, Z. M. (2012) Hypoxia regulates CD44 and its variantisoforms through HIF-1alpha in triple negative breast cancer. PLoS ONE 7, e44078. https://doi.org/10.1371/journal.pone.0044078
- Liang, D., Ma, Y., Liu, J., Trope, C. G., Holm, R., Nesland, J. M. and Suo, Z. (2012) The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer 12, 201. https://doi.org/10.1186/1471-2407-12-201
- Liang, G., Li, S., Du, W., Ke, Q., Cai, J. and Yang, J. (2017) Hypoxia regulates CD44 expression via hypoxia-inducible factor-1alpha in human gastric cancer cells. Oncol. Lett. 13, 967-972. https://doi.org/10.3892/ol.2016.5473
- Louie, E., Nik, S., Chen, J. S., Schmidt, M., Song, B., Pacson, C., Chen, X. F., Park, S., Ju, J. and Chen, E. I. (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res. 12, R94. https://doi.org/10.1186/bcr2773
- Masoud, G. N. and Li, W. (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 5, 378-389. https://doi.org/10.1016/j.apsb.2015.05.007
-
Mima, K., Okabe, H., Ishimoto, T., Hayashi, H., Nakagawa, S., Kuroki, H., Watanabe, M., Beppu, T., Tamada, M. and Nagano, O. (2012) CD44s Regulates the TGF-
${\beta}$ -mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res. 72, 3414-3423. https://doi.org/10.1158/0008-5472.CAN-12-0299 - Morath, I., Hartmann, T. N. and Orian-Rousseau, V. (2016) CD44: more than a mere stem cell marker. Int. J. Biochem. Cell Biol. 81, 166-173. https://doi.org/10.1016/j.biocel.2016.09.009
- Myszczyszyn, A., Czarnecka, A. M., Matak, D., Szymanski, L., Lian, F., Kornakiewicz, A., Bartnik, E., Kukwa, W., Kieda, C. and Szczylik, C. (2015) The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis. Stem Cell Rev. 11, 919-943. https://doi.org/10.1007/s12015-015-9611-y
- Nam, K., Oh, S., Lee, K. M., Yoo, S. A. and Shin, I. (2015) CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell. Signal. 27, 1882-1894. https://doi.org/10.1016/j.cellsig.2015.05.002
- Nam, K., Oh, S. and Shin, I. (2016) Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src-Akt-LKB1-AMPKalpha pathway. Biochem. J. 473, 3013-3030. https://doi.org/10.1042/BCJ20160613
- Naor, D., Nedvetzki, S., Golan, I., Melnik, L. and Faitelson, Y. (2002) CD44 in cancer. Crit. Rev. Clin. Lab. Sci. 39, 527-579. https://doi.org/10.1080/10408360290795574
- Ohashi, R., Takahashi, F., Cui, R., Yoshioka, M., Gu, T., Sasaki, S., Tominaga, S., Nishio, K., Tanabe, K. K. and Takahashi, K. (2007) Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell. Cancer Lett. 252, 225-234. https://doi.org/10.1016/j.canlet.2006.12.025
- Park, J. H., Choi, B. H., Ku, S. K., Kim, D. H., Jung, K. A., Oh, E. and Kwak, M. K. (2017) Amelioration of high fat diet-induced nephropathy by cilostazol and rosuvastatin. Arch. Pharm. Res. 40, 391-402. https://doi.org/10.1007/s12272-017-0889-y
- Patrawala, L., Calhoun, T., Schneider-Broussard, R., Li, H., Bhatia, B., Tang, S., Reilly, J., Chandra, D., Zhou, J. and Claypool, K. (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25, 1696-1708. https://doi.org/10.1038/sj.onc.1209327
- Ryoo, I. G., Choi, B. H., Ku, S. K. and Kwak, M. K. (2018) High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance. Redox Biol. 17, 246-258. https://doi.org/10.1016/j.redox.2018.04.015
- Semenza, G. L. (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Dev. Biol. 15, 551-578. https://doi.org/10.1146/annurev.cellbio.15.1.551
- Semenza, G. L. (2004) Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell 5, 405-406. https://doi.org/10.1016/S1535-6108(04)00118-7
- Semenza, G. L. (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33, 207-214. https://doi.org/10.1016/j.tips.2012.01.005
- Semenza, G. L. (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 123, 3664-3671. https://doi.org/10.1172/JCI67230
- Shang, Z., Cai, Q., Zhang, M., Zhu, S., Ma, Y., Sun, L., Jiang, N., Tian, J., Niu, X., Chen, J., Sun, Y. and Niu, Y. (2015) A switch from CD44(+) cell to EMT cell drives the metastasis of prostate cancer. Oncotarget 6, 1202-1216.
- Suzuki, H., Tomida, A. and Tsuruo, T. (2001) Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene 20, 5779-5788. https://doi.org/10.1038/sj.onc.1204742
- Tsukita, S., Oishi, K., Sato, N., Sagara, J., Kawai, A. and Tsukita, S. (1994) ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J. Cell Biol. 126, 391-401. https://doi.org/10.1083/jcb.126.2.391
- Weidemann, A. and Johnson, R. S. (2008) Biology of HIF-1alpha. Cell Death Differ. 15, 621-627. https://doi.org/10.1038/cdd.2008.12
- Yan, Y., Zuo, X. and Wei, D. (2015) Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl. Med. 4, 1033-1043. https://doi.org/10.5966/sctm.2015-0048
- Yoon, C., Park, D. J., Schmidt, B., Thomas, N. J., Lee, H.-J., Kim, T. S., Janjigian, Y. Y., Cohen, D. J. and Yoon, S. S. (2014) CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance. Clin. Cancer Res. 20, 3974-3988. https://doi.org/10.1158/1078-0432.CCR-14-0011
- Zhang, Z., Filho, M. S. and Nor, J. E. (2012) The biology of head and neck cancer stem cells. Oral Oncol. 48, 1-9. https://doi.org/10.1016/j.oraloncology.2011.10.004
- Zhao, P., Damerow, M. S., Stern, P., Liu, A. H., Sweet-Cordero, A., Siziopikou, K., Neilson, J. R., Sharp, P. A. and Cheng, C. (2013) CD44 promotes Kras-dependent lung adenocarcinoma. Oncogene 32, 5186-5190. https://doi.org/10.1038/onc.2012.542
- Zoller, M. (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat. Rev. Cancer 11, 254-267. https://doi.org/10.1038/nrc3023
Cited by
- Anticancer Activities of Thymus vulgaris L. in Experimental Breast Carcinoma In Vivo and In Vitro vol.20, pp.7, 2019, https://doi.org/10.3390/ijms20071749
- CD44 in Ovarian Cancer Progression and Therapy Resistance—A Critical Role for STAT3 vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.589601
- Tumour Regression via Integrative Regulation of Neurological, Inflammatory, and Hypoxic Tumour Microenvironment vol.28, pp.2, 2020, https://doi.org/10.4062/biomolther.2019.135
- The role of CD44 in pathological angiogenesis vol.34, pp.10, 2020, https://doi.org/10.1096/fj.202000380rr
- The novel interplay between CD44 standard isoform and the caspase-1/IL1B pathway to induce hepatocellular carcinoma progression vol.11, pp.11, 2018, https://doi.org/10.1038/s41419-020-03158-6