DOI QR코드

DOI QR Code

Overexpression of CD44 Standard Isoform Upregulates HIF-1α Signaling in Hypoxic Breast Cancer Cells

  • Ryu, Dayoung (Department of Pharmacy, Graduate School of The Catholic University of Korea) ;
  • Ryoo, In-geun (Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea) ;
  • Kwak, Mi-Kyoung (Department of Pharmacy, Graduate School of The Catholic University of Korea)
  • Received : 2018.06.26
  • Accepted : 2018.07.16
  • Published : 2018.09.01

Abstract

Cluster of differentiation 44 (CD44), a cell surface receptor for hyaluronic acid (HA), is involved in aggressive cancer phenotypes. Herein, we investigated the role of the CD44 standard isoform (CD44s) in hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) regulation using MCF7 overexpressing CD44s (pCD44s-MCF7). When pCD44s-MCF7 was incubated under hypoxia, levels of $HIF-1{\alpha}$, vascular endothelial growth factor, and the $HIF-1{\alpha}$ response element-derived luciferase activity were significantly increased compared to those in the control MCF7. Incubation of pCD44s-MCF7 cells with HA further increased $HIF-1{\alpha}$ accumulation, and the silencing of CD44s attenuated $HIF-1{\alpha}$ elevation, which verifies the role of CD44s in $HIF-1{\alpha}$ regulation. In addition, the levels of phosphorylated extracellular signal-regulated kinase (ERK) was higher in hypoxic pCD44s-MCF7 cells, and $HIF-1{\alpha}$ accumulation was diminished by the pharmacological inhibitors of ERK. CD44s-mediated $HIF-1{\alpha}$ augmentation resulted in two functional outcomes. First, pCD44s-MCF7 cells showed facilitated cell motility under hypoxia via the upregulation of proteins associated with epithelial-mesenchymal transition, such as SNAIL1 and ZEB1. Second, pCD44s-MCF7 cells exhibited higher levels of glycolytic proteins, such as glucose transporter-1, and produced higher levels of lactate under hypoxa. As a consequence of the enhanced glycolytic adaptation to hypoxia, pCD44s-MCF7 cells exhibited a higher rate of cell survival under hypoxia than that of the control MCF7, and glucose deprivation abolished these differential responses of the two cell lines. Taken together, these results suggest that CD44s activates hypoxia-inducible $HIF-1{\alpha}$ signaling via ERK pathway, and the $CD44s-ERK-HIF-1{\alpha}$ pathway is involved in facilitated cancer cell viability and motility under hypoxic conditions.

Keywords

References

  1. Bourguignon, L. Y., Peyrollier, K., Xia, W. and Gilad, E. (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat- 3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J. Biol. Chem. 283, 17635-17651. https://doi.org/10.1074/jbc.M800109200
  2. Chen, C., Zhao, S., Karnad, A. and Freeman, J. W. (2018) The biology and role of CD44 in cancer progression: therapeutic implications. J. Hematol. Oncol. 11, 64. https://doi.org/10.1186/s13045-018-0605-5
  3. Chen, Y., Fu, Z., Xu, S., Xu, Y. and Xu, P. (2014) The prognostic value of CD44 expression in gastric cancer: a meta-analysis. Biomed. Pharmacother. 68, 693-697. https://doi.org/10.1016/j.biopha.2014.08.001
  4. Cho, S. H., Park, Y. S., Kim, H. J., Kim, C. H., Lim, S. W., Huh, J. W., Lee, J. H. and Kim, H. R. (2012) CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. Int. J. Oncol. 41, 211-218.
  5. Guillemin, K. and Krasnow, M. A. (1997) The hypoxic response: huffing and HIFing. Cell 89, 9-12. https://doi.org/10.1016/S0092-8674(00)80176-2
  6. Huh, J. W., Kim, H. R., Kim, Y. J., Lee, J. H., Park, Y. S., Cho, S. H. and Joo, J. K. (2009) Expression of standard CD44 in human colorectal carcinoma: association with prognosis. Pathol. Int. 59, 241-246. https://doi.org/10.1111/j.1440-1827.2009.02357.x
  7. Kang, M. H., Choi, S. and Kim, B. H. (2017) Skin wound healing effects and action mechanism of acai berry water extracts. Toxicol. Res. 33, 149-156. https://doi.org/10.5487/TR.2017.33.2.149
  8. Karousou, E., Misra, S., Ghatak, S., Dobra, K., Gotte, M., Vigetti, D., Passi, A., Karamanos, N. K. and Skandalis, S. S. (2017) Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol. 59, 3-22. https://doi.org/10.1016/j.matbio.2016.10.001
  9. Kietzmann, T., Mennerich, D. and Dimova, E. Y. (2016) Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity. Front. Cell Dev. Biol. 4, 11.
  10. Kim, T. H., Hur, E. G., Kang, S. J., Kim, J. A., Thapa, D., Lee, Y. M., Ku, S. K., Jung, Y. and Kwak, M. K. (2011) NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Res. 71, 2260-2275. https://doi.org/10.1158/0008-5472.CAN-10-3007
  11. Krishnamachary, B., Penet, M. F., Nimmagadda, S., Mironchik, Y., Raman, V., Solaiyappan, M., Semenza, G. L., Pomper, M. G. and Bhujwalla, Z. M. (2012) Hypoxia regulates CD44 and its variantisoforms through HIF-1alpha in triple negative breast cancer. PLoS ONE 7, e44078. https://doi.org/10.1371/journal.pone.0044078
  12. Liang, D., Ma, Y., Liu, J., Trope, C. G., Holm, R., Nesland, J. M. and Suo, Z. (2012) The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer 12, 201. https://doi.org/10.1186/1471-2407-12-201
  13. Liang, G., Li, S., Du, W., Ke, Q., Cai, J. and Yang, J. (2017) Hypoxia regulates CD44 expression via hypoxia-inducible factor-1alpha in human gastric cancer cells. Oncol. Lett. 13, 967-972. https://doi.org/10.3892/ol.2016.5473
  14. Louie, E., Nik, S., Chen, J. S., Schmidt, M., Song, B., Pacson, C., Chen, X. F., Park, S., Ju, J. and Chen, E. I. (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res. 12, R94. https://doi.org/10.1186/bcr2773
  15. Masoud, G. N. and Li, W. (2015) HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 5, 378-389. https://doi.org/10.1016/j.apsb.2015.05.007
  16. Mima, K., Okabe, H., Ishimoto, T., Hayashi, H., Nakagawa, S., Kuroki, H., Watanabe, M., Beppu, T., Tamada, M. and Nagano, O. (2012) CD44s Regulates the TGF-${\beta}$-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res. 72, 3414-3423. https://doi.org/10.1158/0008-5472.CAN-12-0299
  17. Morath, I., Hartmann, T. N. and Orian-Rousseau, V. (2016) CD44: more than a mere stem cell marker. Int. J. Biochem. Cell Biol. 81, 166-173. https://doi.org/10.1016/j.biocel.2016.09.009
  18. Myszczyszyn, A., Czarnecka, A. M., Matak, D., Szymanski, L., Lian, F., Kornakiewicz, A., Bartnik, E., Kukwa, W., Kieda, C. and Szczylik, C. (2015) The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis. Stem Cell Rev. 11, 919-943. https://doi.org/10.1007/s12015-015-9611-y
  19. Nam, K., Oh, S., Lee, K. M., Yoo, S. A. and Shin, I. (2015) CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell. Signal. 27, 1882-1894. https://doi.org/10.1016/j.cellsig.2015.05.002
  20. Nam, K., Oh, S. and Shin, I. (2016) Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src-Akt-LKB1-AMPKalpha pathway. Biochem. J. 473, 3013-3030. https://doi.org/10.1042/BCJ20160613
  21. Naor, D., Nedvetzki, S., Golan, I., Melnik, L. and Faitelson, Y. (2002) CD44 in cancer. Crit. Rev. Clin. Lab. Sci. 39, 527-579. https://doi.org/10.1080/10408360290795574
  22. Ohashi, R., Takahashi, F., Cui, R., Yoshioka, M., Gu, T., Sasaki, S., Tominaga, S., Nishio, K., Tanabe, K. K. and Takahashi, K. (2007) Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell. Cancer Lett. 252, 225-234. https://doi.org/10.1016/j.canlet.2006.12.025
  23. Park, J. H., Choi, B. H., Ku, S. K., Kim, D. H., Jung, K. A., Oh, E. and Kwak, M. K. (2017) Amelioration of high fat diet-induced nephropathy by cilostazol and rosuvastatin. Arch. Pharm. Res. 40, 391-402. https://doi.org/10.1007/s12272-017-0889-y
  24. Patrawala, L., Calhoun, T., Schneider-Broussard, R., Li, H., Bhatia, B., Tang, S., Reilly, J., Chandra, D., Zhou, J. and Claypool, K. (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25, 1696-1708. https://doi.org/10.1038/sj.onc.1209327
  25. Ryoo, I. G., Choi, B. H., Ku, S. K. and Kwak, M. K. (2018) High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance. Redox Biol. 17, 246-258. https://doi.org/10.1016/j.redox.2018.04.015
  26. Semenza, G. L. (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Dev. Biol. 15, 551-578. https://doi.org/10.1146/annurev.cellbio.15.1.551
  27. Semenza, G. L. (2004) Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell 5, 405-406. https://doi.org/10.1016/S1535-6108(04)00118-7
  28. Semenza, G. L. (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33, 207-214. https://doi.org/10.1016/j.tips.2012.01.005
  29. Semenza, G. L. (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 123, 3664-3671. https://doi.org/10.1172/JCI67230
  30. Shang, Z., Cai, Q., Zhang, M., Zhu, S., Ma, Y., Sun, L., Jiang, N., Tian, J., Niu, X., Chen, J., Sun, Y. and Niu, Y. (2015) A switch from CD44(+) cell to EMT cell drives the metastasis of prostate cancer. Oncotarget 6, 1202-1216.
  31. Suzuki, H., Tomida, A. and Tsuruo, T. (2001) Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene 20, 5779-5788. https://doi.org/10.1038/sj.onc.1204742
  32. Tsukita, S., Oishi, K., Sato, N., Sagara, J., Kawai, A. and Tsukita, S. (1994) ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J. Cell Biol. 126, 391-401. https://doi.org/10.1083/jcb.126.2.391
  33. Weidemann, A. and Johnson, R. S. (2008) Biology of HIF-1alpha. Cell Death Differ. 15, 621-627. https://doi.org/10.1038/cdd.2008.12
  34. Yan, Y., Zuo, X. and Wei, D. (2015) Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl. Med. 4, 1033-1043. https://doi.org/10.5966/sctm.2015-0048
  35. Yoon, C., Park, D. J., Schmidt, B., Thomas, N. J., Lee, H.-J., Kim, T. S., Janjigian, Y. Y., Cohen, D. J. and Yoon, S. S. (2014) CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance. Clin. Cancer Res. 20, 3974-3988. https://doi.org/10.1158/1078-0432.CCR-14-0011
  36. Zhang, Z., Filho, M. S. and Nor, J. E. (2012) The biology of head and neck cancer stem cells. Oral Oncol. 48, 1-9. https://doi.org/10.1016/j.oraloncology.2011.10.004
  37. Zhao, P., Damerow, M. S., Stern, P., Liu, A. H., Sweet-Cordero, A., Siziopikou, K., Neilson, J. R., Sharp, P. A. and Cheng, C. (2013) CD44 promotes Kras-dependent lung adenocarcinoma. Oncogene 32, 5186-5190. https://doi.org/10.1038/onc.2012.542
  38. Zoller, M. (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat. Rev. Cancer 11, 254-267. https://doi.org/10.1038/nrc3023

Cited by

  1. Anticancer Activities of Thymus vulgaris L. in Experimental Breast Carcinoma In Vivo and In Vitro vol.20, pp.7, 2019, https://doi.org/10.3390/ijms20071749
  2. CD44 in Ovarian Cancer Progression and Therapy Resistance—A Critical Role for STAT3 vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.589601
  3. Tumour Regression via Integrative Regulation of Neurological, Inflammatory, and Hypoxic Tumour Microenvironment vol.28, pp.2, 2020, https://doi.org/10.4062/biomolther.2019.135
  4. The role of CD44 in pathological angiogenesis vol.34, pp.10, 2020, https://doi.org/10.1096/fj.202000380rr
  5. The novel interplay between CD44 standard isoform and the caspase-1/IL1B pathway to induce hepatocellular carcinoma progression vol.11, pp.11, 2018, https://doi.org/10.1038/s41419-020-03158-6