DOI QR코드

DOI QR Code

Phloxine O, a Cosmetic Colorant, Suppresses the Expression of Thymic Stromal Lymphopoietin and Acute Dermatitis Symptoms in Mice

  • Lee, Hye Eun (BK21 Plus Team, College of Pharmacy, The Catholic University of Korea) ;
  • Yang, Gabsik (BK21 Plus Team, College of Pharmacy, The Catholic University of Korea) ;
  • Kim, Kyu-Bong (College of Pharmacy, Dankook University) ;
  • Lee, Byung-Mu (College of Pharmacy, Sungkyunkwan University) ;
  • Lee, Joo Young (BK21 Plus Team, College of Pharmacy, The Catholic University of Korea)
  • Received : 2017.06.29
  • Accepted : 2017.09.27
  • Published : 2018.09.01

Abstract

Cosmetics are primarily applied to the skin; therefore, the association of cosmetic dyes with skin diseases or inflammation is a topic of great interest. Thymic stromal lymphopoietin (TSLP) is an interleukin 7-like cytokine that activates dendritic cells to promote Th2 inflammatory immune responses. TSLP is highly expressed in keratinocytes under inflammatory conditions, which suggests that it may play a critical role in the development of skin diseases, such as atopic dermatitis. Therefore, we investigated whether cosmetic dyes influenced the production of TSLP by keratinocytes. Phloxine O, also known as D&C Red No.27, is one of the most common red synthetic pigments and is widely used in colored cosmetics. Our results showed that Phloxine O downregulated phorbol 12-myristate 13-acetate-induced production of TSLP in a murine keratinocyte cell line (PAM212). Phloxine O also suppressed TSLP expression in KCMH-1 cells, which are mouse keratinocytes that constitutively produce high levels of TSLP. To investigate the in vivo effects of Phloxine O, we induced TSLP expression in mouse ear skin by topically applying MC903, a vitamin D3 analogue that is a well-known inducer of atopic dermatitis-like symptoms. Topical application of Phloxine O prevented MC903-induced TSLP production in mouse ear skin, attenuated the acute dermatitis-like symptoms and decreased serum IgE and histamine levels in mice. Suppression of TSLP expression by Phloxine O correlated with reduced expression of OX40 ligand and Th2 cytokines in mouse ear skin. Our results showed that Phloxine O may be beneficial to prevent dermatitis by suppressing the expression of TSLP and Th2 cytokines in skin.

Keywords

References

  1. Allakhverdi, Z., Comeau, M. R. and Delespesse, G. (2011) Dexamethasone regulation of thymic stromal lymphopoietin receptor expression on mast cells and their precursors. J. Allergy Clin. Immunol. 127, 523-524.e2. https://doi.org/10.1016/j.jaci.2010.09.028
  2. Bieber, T. (2008) Atopic dermatitis. N. Engl. J. Med. 358, 1483-1494. https://doi.org/10.1056/NEJMra074081
  3. Brown, S. J., Relton, C. L., Liao, H., Zhao, Y., Sandilands, A., Wilson, I. J., Burn, J., Reynolds, N. J., McLean, W. H. and Cordell, H. J. (2008) Filaggrin null mutations and childhood atopic eczema: a population-based case-control study. J. Allergy Clin. Immunol. 121, 940-946.e3. https://doi.org/10.1016/j.jaci.2008.01.013
  4. Cianferoni, A. and Spergel, J. (2014) The importance of TSLP in allergic disease and its role as a potential therapeutic target. Expert Rev. Clin. Immunol. 10, 1463-1474. https://doi.org/10.1586/1744666X.2014.967684
  5. Cultrone, A., de Wouters, T., Lakhdari, O., Kelly, D., Mulder, I., Logan, E., Lapaque, N., Dore, J. and Blottiere, H. M. (2013) The NF-${\kappa}B$ binding site located in the proximal region of the TSLP promoter is critical for TSLP modulation in human intestinal epithelial cells. Eur. J. Immunol. 43, 1053-1062. https://doi.org/10.1002/eji.201142340
  6. FDA (2001) The Code of Federal Regulations of the United States of America, Title 21, Part 74.1328: U.S. Government Printing Office.
  7. Gao, X. K., Nakamura, N., Fuseda, K., Tanaka, H., Inagaki, N. and Nagai, H. (2004) Establishment of allergic dermatitis in NC/Nga mice as a model for severe atopic dermatitis. Biol. Pharm. Bull. 27, 1376-1381. https://doi.org/10.1248/bpb.27.1376
  8. Johansson, S. G., Bieber, T., Dahl, R., Friedmann, P. S., Lanier, B. Q., Lockey, R. F., Motala, C., Ortega Martell, J. A., Platts-Mills, T. A., Ring, J., Thien, F., Van Cauwenberge, P. and Williams, H. C. (2004) Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J. Allergy Clin. Immunol. 113, 832-836. https://doi.org/10.1016/j.jaci.2003.12.591
  9. Kashyap, M., Rochman, Y., Spolski, R., Samsel, L. and Leonard, W. J. (2011) Thymic stromal lymphopoietin is produced by dendritic cells. J. Immunol. 187, 1207-1211. https://doi.org/10.4049/jimmunol.1100355
  10. Kim, M., Yun, J. W., Shin, K., Cho, Y., Yang, M., Nam, K. T. and Lim, K. M. (2017) Expression levels of GABA-A receptor subunit alpha 3, Gabra3 and lipoprotein lipase, Lpl are associated with the susceptibility to acetaminophen-induced hepatotoxicity. Biomol. Ther. (Seoul) 25, 112-121. https://doi.org/10.4062/biomolther.2016.076
  11. Le, T. A., Takai, T., Vu, A. T., Kinoshita, H., Ikeda, S., Ogawa, H. and Okumura, K. (2010) Glucocorticoids inhibit double-stranded RNA-induced thymic stromal lymphopoietin release from keratinocytes in an atopic cytokine milieu more effectively than tacrolimus. Int. Arch. Allergy Immunol. 153, 27-34. https://doi.org/10.1159/000301576
  12. Lee, D. Y., Hwang, C. J., Choi, J. Y., Park, M. H., Song, M. J., Oh, K. W., Son, D. J., Lee, S. H., Han, S. B. and Hong, J. T. (2017) Inhibitory effect of carnosol on phthalic anhydride-induced atopic dermatitis via inhibition of STAT3. Biomol. Ther. (Seoul) 25, 535-544. https://doi.org/10.4062/biomolther.2017.006
  13. Lee, H. E., Yang, G., Kim, N. D., Jeong, S., Jung, Y., Choi, J. Y., Park, H. H. and Lee, J. Y. (2016) Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: a novel strategy to treat acute gout. Sci. Rep. 6, 38622. https://doi.org/10.1038/srep38622
  14. Leung, D. Y. (2016) Clinical implications of new mechanistic insights into atopic dermatitis. Curr. Opin. Pediatr. 28, 456-462. https://doi.org/10.1097/MOP.0000000000000374
  15. Leyva-Castillo, J. M., Hener, P., Michea, P., Karasuyama, H., Chan, S., Soumelis, V. and Li, M. (2013) Skin thymic stromal lymphopoietin initiates Th2 responses through an orchestrated immune cascade. Nat. Commun. 4, 2847. https://doi.org/10.1038/ncomms3847
  16. Li, M., Hener, P., Zhang, Z., Kato, S., Metzger, D. and Chambon, P. (2006) Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc. Natl. Acad. Sci. U.S.A. 103, 11736-11741. https://doi.org/10.1073/pnas.0604575103
  17. Mizuno, K., Morizane, S., Takiguchi, T. and Iwatsuki, K. (2015) Dexamethasone but not tacrolimus suppresses TNF-${\alpha}$-induced thymic stromal lymphopoietin expression in lesional keratinocytes of atopic dermatitis model. J. Dermatol. Sci. 80, 45-53. https://doi.org/10.1016/j.jdermsci.2015.06.016
  18. Murakami-Satsutani, N., Ito, T., Nakanishi, T., Inagaki, N., Tanaka, A., Vien, P. T., Kibata, K., Inaba, M. and Nomura, S. (2014) IL-33 promotes the induction and maintenance of Th2 immune responses by enhancing the function of OX40 ligand. Allergol. Int. 63, 443-455. https://doi.org/10.2332/allergolint.13-OA-0672
  19. Nutten, S. (2015) Atopic dermatitis: global epidemiology and risk factors. Ann. Nutr. Metab. 66 Suppl 1, 8-16. https://doi.org/10.1159/000370220
  20. Odhiambo, J. A., Williams, H. C., Clayton, T. O., Robertson, C. F. and Asher, M. I. (2009) Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. J. Allergy Clin. Immunol. 124, 1251-1258.e23. https://doi.org/10.1016/j.jaci.2009.10.009
  21. Pulendran, B., Tang, H. and Manicassamy, S. (2010) Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat. Immunol. 11, 647-655. https://doi.org/10.1038/ni.1894
  22. Qi, H., Zhu, B., Abe, N., Shin, Y., Murata, Y. and Nakamura, Y. (2012) Involvement of intracellular oxidative stress-sensitive pathway in phloxine B-induced photocytotoxicity in human T lymphocytic leukemia cells. Food Chem. Toxicol. 50, 1841-1847. https://doi.org/10.1016/j.fct.2012.03.011
  23. Segawa, R., Yamashita, S., Mizuno, N., Shiraki, M., Hatayama, T., Satou, N., Hiratsuka, M., Hide, M. and Hirasawa, N. (2014) Identification of a cell line producing high levels of TSLP: advantages for screening of anti-allergic drugs. J. Immunol. Methods 402, 9-14. https://doi.org/10.1016/j.jim.2013.10.012
  24. Wang, W. L., Li, H. Y., Zhang, M. S., Gao, P. S., He, S. H., Zheng, T., Zhu, Z. and Zhou, L. F. (2013) Thymic stromal lymphopoietin: a promising therapeutic target for allergic diseases. Int. Arch. Allergy Immunol. 160, 18-26. https://doi.org/10.1159/000341665
  25. Wu, C. Y., Sarfati, M., Heusser, C., Fournier, S., Rubio-Trujillo, M., Peleman, R. and Delespesse, G. (1991) Glucocorticoids increase the synthesis of immunoglobulin E by interleukin 4-stimulated human lymphocytes. J. Clin. Invest. 87, 870-877. https://doi.org/10.1172/JCI115092
  26. Yang, G., Lee, H. E. and Lee, J. Y. (2016a) A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet. Sci. Rep. 6, 24399. https://doi.org/10.1038/srep24399
  27. Yang, G., Oh, J. W., Lee, H. E., Lee, B. H., Lim, K. M. and Lee, J. Y. (2016b) Topical application of dieckol ameliorates atopic dermatitis in NC/Nga mice by suppressing thymic stromal lymphopoietin production. J. Invest. Dermatol. 136, 1062-1066. https://doi.org/10.1016/j.jid.2015.12.046
  28. Yuspa, S. H., Hawley-Nelson, P., Koehler, B. and Stanley, J. R. (1980) A survey of transformation markers in differentiating epidermal cell lines in culture. Cancer Res. 40, 4694-4703.
  29. Zieg, G., Lack, G., Harbeck, R. J., Gelfand, E. W. and Leung, D. Y. (1994) In vivo effects of glucocorticoids on IgE production. J. Allergy Clin. Immunol. 94, 222-230. https://doi.org/10.1053/ai.1994.v94.a54936

Cited by

  1. Topical application of celastrol alleviates atopic dermatitis symptoms mediated through the regulation of thymic stromal lymphopoietin and group 2 innate lymphoid cells vol.84, pp.22, 2021, https://doi.org/10.1080/15287394.2021.1955785