DOI QR코드

DOI QR Code

A Study on Equation Recognition Using Tree Structure

트리 구조를 이용한 수식 인식 연구

  • Received : 2018.06.14
  • Accepted : 2018.07.26
  • Published : 2018.08.30

Abstract

The Compared to general sentences, the Equation uses a complex structure and various characters and symbols, so that it is not possible to input all the character sets by simply inputting a keyboard. Therefore, the editor is implemented in a text editor such as Hangul or Word. In order to express the Equation properly, it is necessary to have the learner information which can be meaningful to interpret the syntax. Even if a character is input, it can be represented by another expression depending on the relationship between the size and the position. In other words, the form of the expression is expressed as a tree model considering the relationship between characters and symbols such as the position and size to be expressed. As a field of character recognition application, a technique of recognizing characters or symbols(code) has been widely known, but a method of inputting and interpreting a Equation requires a more complicated analysis process than a general text. In this paper, we have implemented a Equation recognizer that recognizes characters in expressions and quickly analyzes the position and size of expressions.

수식은 일반 문장에 비해 복잡한 구조와 다양한 문자와 기호가 사용되어 단순한 키보드 입력만으로는 모든 문자 집합을 입력할 수 없어 한글이나 워드 같은 문서편집기 내에서도 자체적으로 구현된 수식 편집기를 사용하고 있다. 수식을 올바르게 표현하기 위해 구문을 해석할 수 있는 의미가 될 수 있는 사전 학습 정보가 필요하다. 문자가 입력되더라도 크기와 위치 서로간의 관계에 따라 다른 수식으로 표현될 수 있기 때문이다. 즉 표현될 위치와 크기 등 문자와 기호들 간의 상호관계를 고려하여 수식의 형태를 트리 모델로 표현한다. 문자인식 응용의 한 분야로 문자나 기호(부호)를 인식하는 기술을 이미 널리 알려졌지만, 수식을 입력과 해석하는 방법은 일반적인 텍스트에 비해 복잡한 분석 과정이 필요하다. 본 논문에서는 수식의 문자를 인식하고 표현되는 위치와 크기의 결정을 빠르게 해석하는 수식 인식기를 구현하였다.

Keywords

References

  1. M. Sonka, V. Hlavac, and R. Boyle, "Image Processing Analysis and Machine Vision," Cengage Learning, 2007.
  2. R. T. Chin, and C. A. Harlow, "Automated Visual Inspection: A Survey," IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.PAMI-4, No.6, pp.557-573, 1982. https://doi.org/10.1109/TPAMI.1982.4767309
  3. R .C. Gonzalez, and R.E. Woods, Digital Image Processing, 2nd Ed, Prentice-Hall, 2002.
  4. A. Grvavec and D. Blosten, "Mathematics Reconition Using Graph Rewriting," Proc. Third Int. Conf. on Document Analysis and Recognition, pp. 417-421, Montreal, Canada, Aug. 1995.
  5. M Okamoto and B Miao, "Recognition of mathematical expressions by using the layout structures of symbols," In Proc. Int. Conference on Document Analysis and Recognition, Saint M alo, France, pp. 242-250, 1991.
  6. Y. Weixin, et al. "Improved deep convolutional neural network for online handwritten Chinese character recognition using domain-specific knowledge." Document Analysis and Recognition (ICDAR), 2015 13th International Conference on. IEEE, 2015.
  7. H. Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
  8. S. Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
  9. C. Razafimandimby, V. Loscri, A. M. Vegni, "A neural network and IoT based scheme for performance assessment in internet of robotic things," IEEE Intern. Conf. on IoT Design and Implement. pp. 241 - 246, April, 2016.
  10. N. Dalal and B. Triggs. "Histograms of oriented gradients for human detection". IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886-893, 2005.
  11. S. Dhalwar, Y. Chinta. and B. Karthikeyan. "Image Processing Based Vehicle Parking Management Using Mobile Application", Indian Journal of Science and Technology 9, pp. 44-50, 2016.