DOI QR코드

DOI QR Code

Respiratory Severity Score as a Predictive Factor for the Mortality of Congenital Diaphragmatic Hernia

  • Ahn, Ja-Hye (Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine) ;
  • Jung, Young Hwa (Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Shin, Seung Han (Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Kim, Hyun-Young (Department of Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Kim, Ee-Kyung (Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine) ;
  • Kim, Han-Suk (Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine)
  • Received : 2018.05.12
  • Accepted : 2018.05.24
  • Published : 2018.08.31

Abstract

Purpose: Congenital diaphragmatic hernia (CDH) is rare but potentially fatal. The overall outcome is highly variable. This study aimed to identify a simple and dynamic parameter that helps predict the mortality of CDH patients in real time, without invasive tests. Methods: We conducted a retrospective chart review of 59 CDH cases. Maternal and fetal information included the gestational age at diagnosis, site of defect, presence of liver herniation, and lung-to-head ratio (LHR) at 20 to 29 weeks of gestational age. Information regarding postnatal treatment, including the number of days until surgery, the need for inhaled nitric oxide (iNO), the need for extracorporeal membrane oxygenation (ECMO), and survival, was collected. The highest respiratory severity score (RSS) within 24 hours after birth was also calculated. Results: Statistical analysis showed that a younger gestational age at the initial diagnosis (P<0.001), a lower LHR (P=0.001), and the presence of liver herniation (P=0.003) were prenatal risk factors for CDH mortality. The RSS and use of iNO and ECMO were significant factors affecting survival. In the multivariate analysis, the only remaining significant risk factor was the highest preoperative RSS within 24 hours after birth (P=0.002). The area under the receiver operating characteristic curve was 0.9375, with a sensitivity of 91.67% and specificity of 83.87% at the RSS cut-off value of 5.2. The positive and negative predictive values were 82.14% and 92.86%, respectively. Conclusion: Using the RSS as a prognostic predictor with simple calculations will help clinicians plan CDH management.

Keywords

References

  1. Barriere F, Michel F, Loundou AD, Fouquet V, Kermorvant E, Blanc S, et al. One-year outcome for congenital diaphragmatic hernia: results from the French National Register. J Pediatr 2018;193:204-10. https://doi.org/10.1016/j.jpeds.2017.09.074
  2. Brindle ME, Cook EF, Tibboel D, Lally PA, Lally KP; Congenital Diaphragmatic Hernia Study Group. A clinical prediction rule for the severity of congenital diaphragmatic hernias in newborns. Pediatrics 2014;134:e413-9. https://doi.org/10.1542/peds.2013-3367
  3. Schultz CM, DiGeronimo RJ, Yoder BA; Congenital Diaphragmatic Hernia Study Group. Congenital diaphragmatic hernia: a simplified postnatal predictor of outcome. J Pediatr Surg 2007;42:510-6. https://doi.org/10.1016/j.jpedsurg.2006.10.043
  4. van den Hout L, Reiss I, Felix JF, Hop WC, Lally PA, Lally KP, et al. Risk factors for chronic lung disease and mortality in newborns with congenital diaphragmatic hernia. Neonatology 2010;98:370-80. https://doi.org/10.1159/000316974
  5. Akinkuotu AC, Cruz SM, Abbas PI, Lee TC, Welty SE, Olutoye OO, et al. Risk-stratification of severity for infants with CDH: prenatal versus postnatal predictors of outcome. J Pediatr Surg 2016;51:44-8. https://doi.org/10.1016/j.jpedsurg.2015.10.009
  6. Baird R, MacNab YC, Skarsgard ED; Canadian Pediatric Surgery Network. Mortality prediction in congenital diaphragmatic hernia. J Pediatr Surg 2008;43:783-7. https://doi.org/10.1016/j.jpedsurg.2007.12.012
  7. Merrill JD, Ballard RA, Cnaan A, Hibbs AM, Godinez RI, Godinez MH, et al. Dysfunction of pulmonary surfactant in chronically ventilated premature infants. Pediatr Res 2004;56:918-26. https://doi.org/10.1203/01.PDR.0000145565.45490.D9
  8. Katz LA, Klein JM. Repeat surfactant therapy for postsurfactant slump. J Perinatol 2006;26:414-22. https://doi.org/10.1038/sj.jp.7211533
  9. Malkar MB, Gardner WP, Mandy GT, Stenger MR, Nelin LD, Shepherd EG, et al. Respiratory severity score on day of life 30 is predictive of mortality and the length of mechanical ventilation in premature infants with protracted ventilation. Pediatr Pulmonol 2015;50:363-9. https://doi.org/10.1002/ppul.23020
  10. Ballard RA, Truog WE, Cnaan A, Martin RJ, Ballard PL, Merrill JD, et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. N Engl J Med 2006;355:343-53. https://doi.org/10.1056/NEJMoa061088
  11. Iyer NP, Mhanna MJ. Non-invasively derived respiratory severity score and oxygenation index in ventilated newborn infants. Pediatr Pulmonol 2013;48:364-9. https://doi.org/10.1002/ppul.22607
  12. Grushka JR, Laberge JM, Puligandla P, Skarsgard ED; Canadian Pediatric Surgery Network. Effect of hospital case volume on outcome in congenital diaphragmatic hernia: the experience of the Canadian Pediatric Surgery Network. J Pediatr Surg 2009;44:873-6. https://doi.org/10.1016/j.jpedsurg.2009.01.023
  13. Weems MF, Jancelewicz T, Sandhu HS. Congenital diaphragmatic hernia: maximizing survival. NeoReviews 2016;17:e705-18. https://doi.org/10.1542/neo.17-12-e705
  14. Kim SY, Shin SH, Kim HS, Jung YH, Kim EK, Choi JH. Pulmonary arterial hypertension after ibuprofen treatment for patent ductus arteriosus in very low birth weight infants. J Pediatr 2016;179:49-53.e1. https://doi.org/10.1016/j.jpeds.2016.08.103
  15. Lusk LA, Wai KC, Moon-Grady AJ, Steurer MA, Keller RL. Persistence of pulmonary hypertension by echocardiography predicts short-term outcomes in congenital diaphragmatic hernia. J Pediatr 2015;166:251-6.e1. https://doi.org/10.1016/j.jpeds.2014.10.024
  16. Keller RL, Tacy TA, Hendricks-Munoz K, Xu J, Moon-Grady AJ, Neuhaus J, et al. Congenital diaphragmatic hernia: endothelin-1, pulmonary hypertension, and disease severity. Am J Respir Crit Care Med 2010;182:555-61. https://doi.org/10.1164/rccm.200907-1126OC
  17. Abman SH, Hansmann G, Archer SL, Ivy DD, Adatia I, Chung WK, et al. Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation 2015;132:2037-99. https://doi.org/10.1161/CIR.0000000000000329
  18. Snoek KG, Reiss IK, Greenough A, Capolupo I, Urlesberger B, Wessel L, et al. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: The CDH EURO Consortium Consensus 2015 Update. Neonatology 2016;110:66-74. https://doi.org/10.1159/000444210
  19. McHoney M, Hammond P. Role of ECMO in congenital diaphragmatic hernia. Arch Dis Child Fetal Neonatal Ed 2018;103:F178-81. https://doi.org/10.1136/archdischild-2016-311707
  20. Fletcher K, Chapman R, Keene S. An overview of medical ECMO for neonates. Semin Perinatol 2018;42:68-79. https://doi.org/10.1053/j.semperi.2017.12.002
  21. Hollinger LE, Lally PA, Tsao K, Wray CJ, Lally KP; Congenital Diaphragmatic Hernia Study Group. A risk-stratified analysis of delayed congenital diaphragmatic hernia repair: does timing of operation matter? Surgery 2014;156:475-82. https://doi.org/10.1016/j.surg.2014.04.015
  22. Kamata S, Usui N, Ishikawa S, Okuyama H, Kitayama Y, Sawai T, et al. Prolonged preoperative stabilization using high-frequency oscillatory ventilation does not improve the outcome in neonates with congenital diaphragmatic hernia. Pediatr Surg Int 1998;13:542-6. https://doi.org/10.1007/s003830050398
  23. Glenski JA, Marsh HM, Hall RT. Calculation of mean airway pressure during mechanical ventilation in neonates. Crit Care Med 1984;12:642-4. https://doi.org/10.1097/00003246-198408000-00007
  24. Green C, Yohannan MD. Umbilical arterial and venous catheters: placement, use, and complications. Neonatal Netw 1998;17:23-8.
  25. Huning BM, Horsch S, Roll C. Blood sampling via umbilical vein catheters decreases cerebral oxygenation and blood volume in preterm infants. Acta Paediatr 2007;96:1617-21. https://doi.org/10.1111/j.1651-2227.2007.00512.x
  26. Del Vecchio A, Franco C, Petrillo F, D'Amato G. Neonatal transfusion practice: when do neonates need red blood cells or platelets? Am J Perinatol 2016;33:1079-84. https://doi.org/10.1055/s-0036-1586106
  27. Mhanna MJ, Iyer NP, Piraino S, Jain M. Respiratory severity score and extubation readiness in very low birth weight infants. Pediatr Neonatol 2017;58:523-8. https://doi.org/10.1016/j.pedneo.2016.12.006
  28. DiBlasi RM, Myers TR, Hess DR. Evidence-based clinical practice guideline: inhaled nitric oxide for neonates with acute hypoxic respiratory failure. Respir Care 2010;55:1717-45.
  29. Campbell BT, Herbst KW, Briden KE, Neff S, Ruscher KA, Hagadorn JI. Inhaled nitric oxide use in neonates with congenital diaphragmatic hernia. Pediatrics 2014;134:e420-6. https://doi.org/10.1542/peds.2013-2644
  30. The Neonatal Inhaled Nitric Oxide Study Group (NINOS). Inhaled nitric oxide and hypoxic respiratory failure in infants with congenital diaphragmatic hernia. Pediatrics 1997;99:838-45. https://doi.org/10.1542/peds.99.6.838
  31. Putnam LR, Tsao K, Morini F, Lally PA, Miller CC, Lally KP, et al. Evaluation of variability in inhaled nitric oxide use and pulmonary hypertension in patients with congenital diaphragmatic hernia. JAMA Pediatr 2016;170:1188-94. https://doi.org/10.1001/jamapediatrics.2016.2023
  32. Ijsselstijn H, van Heijst AF. Long-term outcome of children treated with neonatal extracorporeal membrane oxygenation: increasing problems with increasing age. Semin Perinatol 2014;38:114-21. https://doi.org/10.1053/j.semperi.2013.11.009
  33. Inamura N, Usui N, Okuyama H, Nagata K, Kanamori Y, Fujino Y, et al. Extracorporeal membrane oxygenation for congenital diaphragmatic hernia in Japan. Pediatr Int 2015;57:682-6. https://doi.org/10.1111/ped.12554

Cited by

  1. Accuracy of oxygen saturation index in determining the severity of respiratory failure among preterm infants with respiratory distress syndrome vol.34, pp.14, 2018, https://doi.org/10.1080/14767058.2019.1666363