DOI QR코드

DOI QR Code

Two-Dimensional Model Analysis for Extended Finite Element Method(XFEM) Verification of General Purpose Finite Element Analysis Program

범용유한요소해석 프로그램의 확장유한요소법 성능 검증을 위한 2차원 모델 해석

  • Received : 2018.06.04
  • Accepted : 2018.08.16
  • Published : 2018.08.31

Abstract

In this study, numerical analysis is applied to a two - dimensional model for verifying the general finite element program, Abaqus' s extended finite element method(XFEM). The cohesive element model used in the existing research has a limitation in simulating the actual crack because of the disadvantage that the crack path should be predicted and the element should be inserted. For this reason, the extended finite element method(XFEM), which predicts the path of cracks based on the directionality and specificity of stress, is emerging as a new solution in crack analysis. The validity of the XFEM application was confirmed by comparing the cohesive element analysis with the XFEM analysis by applying the crack path to the self - evident two - dimensional model. Numerical analysis confirms stress distribution and stress specificity immediately before crack initiation and compares it with actual crack initiation path. Based on this study, it is expected that cracks can be simulated by performing actual crack propagation analysis of complex models.

범용유한요소프로그램인 Abaqus의 확장유한요소법(XFEM)의 사용성 검증을 위하여 2차원 모델에 적용하여 수치해석을 수행하였다. 기존의 연구에 많이 사용되었던 응집요소(cohesive element) 모델은 균열 경로를 예측하고 요소를 삽입하여야 하는 단점 때문에 실제 균열을 모사하는데 한계가 있다. 이러한 이유로 응력의 방향성 및 특이성을 바탕으로 균열의 경로를 예측하는 확장유한요소법(XFEM)이 균열 해석에 있어서 더 발전된 방법으로 이용되어 왔다. 이번 연구에서는 균열의 경로가 자명한 2차원 모델에 사용하여 응집요소해석과 XFEM에 응집요소의 물성을 적용한 해석을 비교하고 XFEM 적용의 타당성을 확인하였다. 수치해석으로 균열 발생 직전의 응력분포 및 응력 특이성을 확인하고 실제 균열 발생경로와의 비교를 한다. 본 연구를 바탕으로 몇 가지의 한계를 극복하면 실제 복잡한 모델의 실제 균열진전해석을 수행하여 균열을 모사할 수 있을 것으로 기대된다.

Keywords

References

  1. Abaqus (2014) Abaqus Analysis User's Guide Version 6.14, Dassault Systems Simulia Corp.
  2. Alfarah, B., Lopez-Almansa, F., Oller, S. (2017) New Methodology for Calculating Damage Variables Evolution in Plastic Damage Model for RC Structures, Eng. Struct., 132, pp.70-86. https://doi.org/10.1016/j.engstruct.2016.11.022
  3. Bazant, Z.P., Oh, B.H. (1983) Crack Band Theory for Fracture of Concrete, Mater. & Struct., 16, pp.155-177.
  4. Belytschko, T., Black, T. (1999) Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Methods Eng, 45(5), pp.601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  5. Budyn, E., Zi, G., Moes, T., Belytschko, T. (2004) A Method for Multiple Crack Growth in Brittle Materials without Remeshing, Int. J. Numer. Methods Eng, 61, pp.1741-1770. https://doi.org/10.1002/nme.1130
  6. Cox, B., Yang, Q. (2005) Cohesive Models for Damage Evolution in Laminated Composites, Int. J. Fract., 133, pp.107-137. https://doi.org/10.1007/s10704-005-4729-6
  7. Georgiou, I., Hadavinia, H., Ivankovic, A., Kinloch, J., Tropsa, V., Willians, G. (2003) Cohesive Zone Models and the Plastically Deforming Pell Test, J. Adhes., 79, pp.239-265. https://doi.org/10.1080/00218460309555
  8. Ha, S. (2009) Numerical Simulations of Crack Initiation and Propagation Using Cohesive Zone Elements, J. Comp. Struct. Eng. Inst. Korea, 22(6), pp.519-526.
  9. Kral, P., Hradil, P., Kala, J., Hokes, F., Husek, M. (2017) Identification of parameters of a Concrete Damage Material Model, Proc. Engi., 172, pp.578-585. https://doi.org/10.1016/j.proeng.2017.02.068
  10. Moes, N., Dolbow, J., Belytschko, T. (1999) A Finite Element Method for Crack Growth without Remeshing, IJNME, 46, pp.131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  11. Slowik, M., Nowicki, T. (2012) The Analysis of Diagonal Crack Propagation in Concrete Beams, Comput. Mech., 52, pp.261-267.
  12. Rabczuk, T., Belytschko, T. (2006) Application of Particle Methods to Static Fracture of Reinforced Concrete Strctures, Int. J. Fract, 137, pp.19-49. https://doi.org/10.1007/s10704-005-3075-z
  13. Rabczuk, T., Bordas, S., Zi, G. (2007) A Three Dimensional Meshfree Method for Continuous Multiple-crack Initiation, Propagation and Junction in Statics and Dynamics, Comput. Mech., 40, pp.473-495. https://doi.org/10.1007/s00466-006-0122-1
  14. Slowik, M., Nowicki, T. (2012) The Analysis of Diagonal Crack Propagation in Concrete Beams, Comput.l Mater. Sci., 52, pp.261-267. https://doi.org/10.1016/j.commatsci.2011.02.012
  15. Snozzi, L., Molinari, J.F. (2013) A Cohesive Element Model for Mixed Mode Loading with Frictional Contact Capability, IJNME, 93(5), pp.510-526. https://doi.org/10.1002/nme.4398
  16. Sumer, Y., Aktas, M. (2015) Defining Parameters for Concrete Damage Plasticity Model, Chall. J. Struct. Mech., 1(3), pp.149-155.
  17. Yoo, H., Kim, H. (2016) Simulation of Multi-Cracking in a Reinforced Concrete Beam by Extended Finite Element Method, J. Comput. Struct. Eng. Inst. Korea, 29(2), pp.201-208. https://doi.org/10.7734/COSEIK.2016.29.2.201