DOI QR코드

DOI QR Code

Demonstration of UAS Image-Based Intellectual Demarcation in Cadastral Reexaminationy

지적재조사에서 UAS 영상 기반 지적 경계확정 시범 연구

  • 김달주 (인천대학교 도시과학대학 도시건설공학과) ;
  • 강준오 (인천대학교 도시과학대학 도시건설공학과) ;
  • 한웅지 (인천대학교 도시과학대학 도시건설공학과) ;
  • 이용창 (인천대학교 도시과학대학 도시건설공학과)
  • Received : 2018.06.19
  • Accepted : 2018.06.30
  • Published : 2018.06.30

Abstract

The cadastral rehabilitation project, which has been implemented since 2012, is a project to re-examine the national land that is not in conformity with the cadastral map, There is a lot of trouble in securing financial resources for business execution. This study examines the utility of UAS(Unmanned Aerial System) image - based cadastral demarcation as an alternative to budget reduction in the current state of cadastral rehabilitation, reasonable boundary adjustment, UAV(Unmanned Aerial Vehicles) is used to create 3D models and orthoimages of business districts, and to check accuracy by superimposing and comparing with digital maps of NGII(National Geographic Information Institute). As a result of the study, the accuracy of the 3D model and the orthoimage through the SfM(Structure-from-Motion) - based image interpretation of the digital map of the NGII were derived. In particular, we confirmed the similarity of UAS-based orthoimage with the cadastral boundaries affirmation, It is anticipated that the cost saving effect of current survey and boundary survey can be expected. In addition, it is easy to prepare a report to reduce civil complaints, which is a problematic element of the adjustment.

Keywords

References

  1. Boon, M., Greenfield, R. and Tesfamichael, S. (2016), "Unmanned Aerial Vehicle(UAV) Photogrammetry Produces Accurate Highresolution Orthophotos, Point Clouds and Surface Models for Mapping Wetlands. , South African Journal of Geomatics, Vol. 5, No.2, p. 186-200 https://doi.org/10.4314/sajg.v5i2.7
  2. Hartley, R. I., (1997), "Self-calibration of stationary cameras." , International Journal of Computer Vision, Vol. 22, No. 1, p. 5-23. https://doi.org/10.1023/A:1007957826135
  3. Hartley, R. I., Hayman, E., de Agapito, L. and Reid, I., (1999), "Camera calibration and the search for infinity, In Computer Vision.", Proc. of the 7th IEEE International Conference on, IEEE, Kcrkyra, Grccce, p.510-517.
  4. Kim, Dal-Joo, Kang, Joon-Oh, Han, Woong-Ji, Lee, Yong-Chang (2018) " UAS 영상 기반 지적재조사 활용 연구" , 한국지형정보공간학회 학술대회 p. 155-156
  5. Lee, In-Soo, Kim, Su-Jung, Seo, Kab-soo (2012) "영상응용지적도 개발 및 활용, 3차년도 : 초경량 무인항공기(UAV : Unmanned Aerial Vehicle)의 지적업무 실용화" 대한지적공사 공간정보연구원
  6. Lee, Yong-Chang, Choi, Hong-Myung (2016), "드론 영상 기반 지적재조사 활용방안", 한국 측량학회 학술대회자료집 p. 277-279
  7. Lee, Yong-Chang, Kang, Joon-Oh (2016), "조정 필지의 합리적 선정을 통한 지적재조사 활성화방안" , 한국측량학회 학술대회자료집 p. 280-284
  8. Lee, Yong-Chang, (2016), "UAS 영상기반 공간 해석", 인천대학교, 총판론 p. 141-302
  9. Lowe D.G. (2004), "Distinctive Image Features from Scale-Invariant Keypoints.", International Journal of Computer Vision
  10. M.J. Westoby, J. Brasington, N.F. Glasser, M.J. Hambrey, J.M. Reynolds (2012), "Structure-from-motion Photogrammetry : A low-cost, effective tool for geoscience applications." , Geomorphology Volume 179, p. 300-314 https://doi.org/10.1016/j.geomorph.2012.08.021
  11. 국토해양부(2011) "지적재조사 기반 조성 연구, 항공사진을 이용한 지적측량 적용방안"
  12. 국토교통부(2016) "무인비행장치(드론) 활용 지적재조사 효율화 방안 연구보고서"
  13. 국토지리정보원 (2018), 무인비행장치 이용 공공 측량 작업지침제정 고시, p. 1-13
  14. 바른땅(2016), "바른땅 2030을 향한 도전, 지적 재조사백서