DOI QR코드

DOI QR Code

Assembly of chemically reduced graphene oxide with folic acid functionalized with pyrene moieties and electrochemical sensing of folate receptors

  • Kwon, Binhee (Department of IT Convergence (Brain Korea PLUS 21), Korea National University of Transportation) ;
  • Park, Jongyeap (Department of IT Convergence (Brain Korea PLUS 21), Korea National University of Transportation) ;
  • Jeong, Woojun (Department of IT Convergence (Brain Korea PLUS 21), Korea National University of Transportation) ;
  • Jeong, Guembi (Department of IT Convergence (Brain Korea PLUS 21), Korea National University of Transportation) ;
  • Ryu, Hyeong Seon (Department of Organic and Nano Engineering, Hanyang University) ;
  • Paoprasert, Peerasak (Department of Chemistry, Faculty of Science and Technology, Thammasat University) ;
  • Park, Sung Young (Department of IT Convergence (Brain Korea PLUS 21), Korea National University of Transportation) ;
  • In, Insik (Department of IT Convergence (Brain Korea PLUS 21), Korea National University of Transportation)
  • 투고 : 2017.11.06
  • 심사 : 2017.12.11
  • 발행 : 2018.07.31

초록

To formulate folate receptor (FR)-specific graphene-based electrochemical electrodes, a folic acid (FA) derivative attached with two pyrene molecules on the glutamate tail of FA was synthesized. The resulting pyrene-functionalized FA (FA-Py) presented the spontaneous noncovalent binding on chemically reduced graphene oxides (rGO) through an ${\pi}-{\pi}$ interaction. Ultrathin morphology, high water-resistance, and preservation of intact FR-specific pteroates from the rGO/FA-Py assembly allow this assembly to be exploited as robust and FR-specific electrochemical electrode materials. The limits of detecting rGO/FA-Py modified electrodes were found to be as low as 3.07 nM in FR concentrations in cyclic voltammetry analysis.

키워드

참고문헌

  1. Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem, 2, 1015 (2010). https://doi.org/10.1038/nchem.907.
  2. Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater, 10, 569 (2011). https://dx.doi.org/10.1038/nmat3064.
  3. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719.
  4. Liu J, Tang J, Gooding JJ. Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem, 22, 12435 (2012). https://doi.org/10.1039/c2jm31218b.
  5. Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev, 112, 6027 (2012). https://doi.org/10.1021/cr300115g.
  6. Chua CK, Pumera M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev, 43, 291 (2014). https://doi.org/10.1039/c3cs60303b.
  7. Englert JM, Dotzer C, Yang G, Schmid M, Papp C, Gottfried JM, Steinrück HP, Spiecker E, Hauke F, Hirsch A. Covalent bulk functionalization of graphene. Nat Chem, 3, 279 (2011). https://doi.org/10.1038/nchem.1010.
  8. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev, 112, 6156 (2012). https://doi.org/10.1021/cr3000412.
  9. Xu Y, Bai H, Lu G, Li C, Shi G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc, 130, 5856 (2008). https://doi.org/10.1021/ja800745y.
  10. Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano, 4, 4001 (2010). https://doi.org/10.1021/nn100939n.
  11. Lee DY, Khatun Z, Lee JH, Lee YK, In I. Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromolecules, 12, 336 (2011). https://doi.org/10.1021/bm101031a.
  12. Park YJ, Park SY, In I. Preparation of water soluble graphene using polyethylene glycol: comparison of covalent approach and noncovalent approach. J Ind Eng Chem, 17, 298 (2011). https://doi.org/10.1016/j.jiec.2011.02.027.
  13. Lee DY, Yoon S, Oh YJ, Park SY, In I. Thermo-responsive assembly of chemically reduced graphene and poly(N-isopropylacrylamide). Macromol Chem Phys, 212, 336 (2011). https://doi.org/10.1002/macp.201000518.
  14. Lee JY, Park YH, Roy AK, Park B, Jang JH, Park SY, In I. Visualization of noncovalent interaction between aliphatic dendrimers and chemically reduced graphene oxide. Chem Lett, 44, 665 (2015). https://doi.org/10.1246/cl.141158.
  15. Park YH, Park SY, In I. Direct noncovalent conjugation of folic acid on reduced graphene oxide as anticancer drug carrier. J Ind Eng Chem, 30, 190 (2015). https://doi.org/10.1016/j.jiec.2015.05.021.
  16. Qin W, Li X, Bian WW, Fan XJ, Qi JY. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. Biomaterials, 31, 1007 (2010). https://doi.org/10.1016/j.biomaterials.2009.10.013.
  17. Wibowo AS, Singh M, Reeder KM, Carter JJ, Kovach AR, Meng W, Ratnam M, Zhang F, Dann CE. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proc Natl Acad Sci U S A, 110, 15180 (2013). https://doi.org/10.1073/pnas.1308827110.
  18. Chen C, Ke J, Zhou XE, Yi W, Brunzelle J, Li J, Yong EL, Xu EH, Melcher K. Structural basis for molecular recognition of folic acid by folate receptors. Nature, 500, 486 (2013). https://doi.org/10.1038/nature12327.
  19. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett, 9, 1593 (2009). https://doi.org/10.1021/nl803798y.
  20. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol, 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451.
  21. Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules, 43, 6515 (2010). https://doi.org/10.1021/ma100572e.
  22. Lee M, Lee J, Park SY, Min B, Kim B, In I. Production of graphene oxide from pitch-based carbon fiber. Sci Rep, 5, 11707 (2015). https://doi.org/10.1038/srep11707.
  23. Yang Q, Pan X. Preparation and characterization of water-soluble single-walled carbon nanotubes by hybridization with hydroxypropyl cellulose derivatives. Ind Eng Chem Res, 49, 2747 (2010). https://doi.org/10.1021/ie9014149.
  24. Huo C, Chambron JC, Meyer M. Dual emission of a bis(pyrene)-functionalized, perbenzylated ${\beta}$-cyclodextrin. New J Chem, 32, 1536 (2008). https://doi.org/10.1039/B803144D.
  25. Park YH, Seo JS, Park SY, Lee JH, In I. Facile noncovalent formulation of organo-soluble chemically reduced graphene oxide/semiconducting polymer assembly. Chem Let, 44, 685 (2015). https://doi.org/10.1246/cl.141206.
  26. Kim J, Cote LJ, Kim F, Huang J. Visualizing graphene based Sheets by fluorescence quenching microscopy. J Am Chem Soc, 132, 260 (2010). https://doi.org/10.1021/ja906730d.
  27. Swathi RS, Sebastian KL. Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence. J Chem Phys, 130, 086101 (2009). https://doi.org/10.1063/1.3077292.
  28. Zhang X, Hou L, Cnossen A, Coleman AC, Ivashenko O, Rudolf P, van Wees BJ, Browne WR, Feringa BL. One-pot functionalization of graphene with porphyrin through cycloaddition reactions. Chem Eur J, 17, 8957 (2011). https://doi.org/10.1002/chem.201100980.
  29. Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett, 8, 1679 (2008). https://doi.org/10.1021/nl080604h.
  30. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM. Improved synthesis of graphene oxide. ACS Nano, 4, 4806 (2010). https://doi.org/10.1021/nn1006368.
  31. Castillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martinez F, Castillo-Leon J. Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst, 138, 1026 (2013). https://doi.org/10.1039/c2an36121c.
  32. Radaram B, Mako T, Levine M. Sensitive and selective detection of cesium via fluorescence quenching. Dalton Trans, 42, 16276 (2013). https://doi.org/10.1039/C3DT52215F.
  33. Shi Y, Huang WT, Luo HQ, Li NB. A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin. Chem Commun, 47, 4676 (2011). https://doi.org/10.1039/C0CC05518B.
  34. Liu Z, Tian C, Lu L, Su X. A novel aptamer-mediated $CuInS_2$ quantum dots@graphene oxide nanocomposites-based fluorescence "turn off-on" nanosensor for highly sensitive and selective detection of kanamycin. RSC Adv, 6, 10205 (2016). https://doi.org/10.1039/C5RA22753D.