• 제목/요약/키워드: chemically reduced graphene oxide

검색결과 9건 처리시간 0.022초

Effect of chemically reduced graphene oxide on epoxy nanocomposites for flexural behaviors

  • Lee, Seul-Yi;Chong, Mi-Hwa;Park, Mira;Kim, Hak-Yong;Park, Soo-Jin
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.67-70
    • /
    • 2014
  • In this work, nanocomposites of epoxy resin and chemically reduced graphene oxide (RGO) were prepared by thermal curing process. X-ray diffractions confirmed the microstructural properties of RGO. Differential scanning calorimetry was used to evaluate the curing behaviors of RGO/epoxy nanocomposites with different RGO loading amounts. We investigated the effect of RGO loading amounts on the mechanical properties of the epoxy nanocomposites. It was found that the presence of RGO improved both flexural strength and modulus of the epoxy nanocomposites till the RGO loading reached 0.4 wt%, and then decreased. The optimum loading achieved about 24.5 and 25.7% improvements, respectively, compared to the neat-epoxy composites. The observed mechanical reinforcement might be an enhancement of mechanical interlocking between the epoxy matrix and RGO due to the unique planar structures.

Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells

  • Rodriguez-Perez, Manuel;Villanueva-Cab, Julio;Pal, Umapada
    • Advances in nano research
    • /
    • 제5권3호
    • /
    • pp.231-244
    • /
    • 2017
  • Graphene oxide (GO) was prepared by modified Hummer's method to produce reduced graphene oxide (RGO) following standard thermal and chemical reduction processes. Prepared RGO colloids were utilized to fabricate RGO films over glass and FTO coated glass substrates through drop-coating. A systematic study was performed to evaluate the effect of reduction degree on the optical and electrical properties of the RGO film. We demonstrate that both the reduction process (thermal and chemical) produce RGO films of similar optical and electrical behaviors. However, the RGO films fabricated using chemically reduced GO colloid render better performance in dye sensitized solar cells (DSSCs), when they are used as counter electrodes (CEs). It has been demonstrated that RGO films of optimum thicknesses fabricated using RGO colloids prepared using lower concentration of hydrazine reducer have better catalytic performance in DSSCs due to a better catalytic interaction with redox couple. The better catalytic performance of the RGO films fabricated at optimal hydrazine concentration is associated to their higher available surface area and lower grain boundaries.

Assembly of chemically reduced graphene oxide with folic acid functionalized with pyrene moieties and electrochemical sensing of folate receptors

  • Kwon, Binhee;Park, Jongyeap;Jeong, Woojun;Jeong, Guembi;Ryu, Hyeong Seon;Paoprasert, Peerasak;Park, Sung Young;In, Insik
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.26-34
    • /
    • 2018
  • To formulate folate receptor (FR)-specific graphene-based electrochemical electrodes, a folic acid (FA) derivative attached with two pyrene molecules on the glutamate tail of FA was synthesized. The resulting pyrene-functionalized FA (FA-Py) presented the spontaneous noncovalent binding on chemically reduced graphene oxides (rGO) through an ${\pi}-{\pi}$ interaction. Ultrathin morphology, high water-resistance, and preservation of intact FR-specific pteroates from the rGO/FA-Py assembly allow this assembly to be exploited as robust and FR-specific electrochemical electrode materials. The limits of detecting rGO/FA-Py modified electrodes were found to be as low as 3.07 nM in FR concentrations in cyclic voltammetry analysis.

Chemically Modified Graphene and Their Hybrid Materials: Toward Printed Electronics

  • 정승열
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.71-71
    • /
    • 2012
  • Chemically modified graphene has been great interest for the application of printed electronics using solution prossesable technique. Here, we demonstrate a large area graphene exfoliation method with fewer defects on the basal plane by application of shear stress in solution to obtain high quality reduced graphene oxide (RGO). Moreover, we introduce a novel route to preparing highly concentrated and conductive RGO in various solvents by monovalent cation-${\pi}$ interaction. Noncovalent binding forces can be induced between a monopole (cation) and a quadrupole (aromatic ${\pi}$ system). The stability of this RGO dispersion was more sensitive to the strength of the cation-${\pi}$ interactions than to the cation-oxygen functional group interactions. The RGO film prepared without a post-annealing process displayed superior electrical conductivity of 97,500 S/m. Our strategy can facilitate the development of large scalable production methods for preparing printed electronics made from high-quality RGO nanosheets.

  • PDF

Electrical Conductivity of Chemically Reduced Graphene Powders under Compression

  • Rani, Adila;Nam, Seung-Woong;Oh, Kyoung-Ah;Park, Min
    • Carbon letters
    • /
    • 제11권2호
    • /
    • pp.90-95
    • /
    • 2010
  • Carbon materials such as graphite and graphene exhibit high electrical conductivity. We examined the electrical conductivity of synthetic and natural graphene powders after the chemical reduction of synthetic and natural graphite oxide from synthetic and natural graphite. The trend of electrical conductivity of both graphene (synthetic and natural) was compared with different graphite materials (synthetic, natural, and expanded) and carbon nanotubes (CNTs) under compression from 0.3 to 60 MPa. We found that synthetic graphene showed a marked increment in electrical conductivity compared to natural graphene. Interestingly, the total increment in electrical conductivity was greater for denser graphite; however, an opposite behavior was observed in nanocarbon materials such as graphene and CNTs, probably due to the differing layer arrangement of nanocarbon materials.

Synthesis and electrochemical analysis of Pt-loaded, polypyrrole-decorated, graphene-composite electrodes

  • Park, Jiyoung;Kim, Seok
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.117-120
    • /
    • 2013
  • In this study, an electro-catalyst of Pt nanoparticles supported by polypyrrole-functionalized graphene (Pt/PPy-reduced graphene oxide [RGO]) is reported. The Pt nanoparticles are deposited on the PPy-RGO composite by chemical reduction of H2PtCl6 using NaBH4. The presence of graphene (RGO) caused higher activity. This might have been due to increased electro-chemically accessible surface areas, increased electronic conductivity, and easier charge-transfer at polymer-electrolyte interfaces, allowing higher dispersion and utilization of the deposited Pt nano-particles. Microstructure, morphology and crystallinity of the synthesized materials were investigated using X-ray diffraction and transmission electron microscopy. The results showed successful deposition of Pt nano-particles, with crystallite size of about 2.7 nm, on the PPy-RGO support film. Catalytic activity for methanol electro-oxidation in fuel cells was investigated using cyclic voltammetry. The fundamental electrochemical test results indicated that the electro-catalytic activity, for methanol oxidation, of the Pt/PPy-RGO combination was much better than for commercial catalyst.

Characterization of Graphite Oxide Reduced by Thermal and/or Chemical Treatments

  • Kim, Jungsoo;Nam, Dae-Geun;Yeum, Jeong Hyun;Suh, Sungbu;Oh, Weontae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권5호
    • /
    • pp.274-279
    • /
    • 2015
  • Reduced graphite oxides (rGOs) were prepared by the common graphite oxidation method and the subsequent reductions. The reduction of graphite oxides (GOs) was conducted chemically and/or thermally. To further reduce the as-prepared rGOs, GOs were treated with chemical/thermal reductions or thermal/chemical reductions, in which the reduction sequence was also considered. The structural changes of as-prepared rGOs, depending on reduction methods, were investigated by X-ray diffraction analyses, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. In addition, we discuss the structural change of the rGOs and their closely related physical and electrical properties, such as thermogravimetry, nitrogen adsorption isotherm, and sheet resistance.

연료전지용 음이온교환막에서 그래핀 유도체의 역할: 최근 동향 (Role of Graphene Derivatives in Anion Exchange Membrane for Fuel Cell: Recent Trends)

  • 마노즈 카라코티;남상용
    • 멤브레인
    • /
    • 제32권6호
    • /
    • pp.411-426
    • /
    • 2022
  • 다양한 장치에 대한 광범위한 의존으로 에너지는 현대 생활에서 중요한 역할을 하고 있다. 전통적인 에너지원은 많은 환경 및 건강 문제를 안고 있어, 환경과 건강에 미치는 영향을 최소화하면서 에너지 수요를 충족할 수 있는 대체 가능한 에너지원이 시급히 필요하다. 이러한 관점에서 연료전지, 특히 음이온 교환막 연료전지는 고가의 촉매를 사용하지 않는 빠른 반응속도, 컴팩트한 디자인, 수소 이외의 연료 선택 가능성 및 보다 저렴한 연료의 사용이 가능한 특성으로 인하여 다른 연료전지에 비해 큰 주목을 받고 있다. 그럼에도 이온전도성이 높고 화학적, 기계적으로 안정적인 음이온 교환막의 개발이 부진한 것이 주요 장애물이 되어 왔고, 그래핀 기반 고분자 복합막이 AEMFC용 전해질막으로 등장하게 되었다. 2D 구조, 높은 기계적 강도, 높은 내화학성 및 표면적과 같은 그래핀의 견고한 구조 및 물리적 특성은 음이온교환막의 성능 개선에 도움이 된다고 보고되고, 그래핀 및 그 유도체를 사용하는 전해질막의 연구가 중요하게 되었으나, 그래핀 재료의 높은 잠재력에도 지나친 응집 경향으로 나타나는 문제점이 지적되고 있어 그래핀 유도체의 표면 개질은 응집을 완화하고 그래핀이 가지는 잠재적 성능을 이끌어내는데 꼭 필요하다. 따라서 본 고에서는 그래핀과 유도체의 표면 개질과 연료 전지용 AEM 제조에서 그 역할에 초점을 맞추어서 논의하고자 한다.

탄소나노튜브 및 환원된 산화그래핀과 고분자간 계면결합력이 나노복합재의 압전 거동에 미치는 영향 (Effect of Interfacial Bonding on Piezoresistivity in Carbon Nanotube and Reduced Graphene Oxide Polymer Nanocomposites)

  • 황상하;김현주;성대한;정영태;강구혁;박영빈
    • 접착 및 계면
    • /
    • 제13권3호
    • /
    • pp.137-144
    • /
    • 2012
  • 탄소나노소재의 화학적 기능화는 대부분 복합체 제조 시 고분자 모재(matrix)와의 계면 특성 향상을 위한 방법으로 적용되어 왔다. 계면결합력의 증가에 따른 효과는 기계적 물성의 증가를 통해 간접적으로 확인할 수 있으며, 이는 계면에서 효과적인 응력전달을 통해 설명된다. 보다 직접적으로 기능화를 통한 계면결합력 증가의 효과를 설명하기 위하여 피에조 저항효과를 관찰할 수 있으며, 이를 통하여 변형에 대한 복합체 내부의 전도성 충진재의 거동을 짐작해 볼 수 있다. 이를 위해 다중벽 탄소나노튜브(MWCNT)와 환원 그래핀(rGO)을 황산/질산 용액을 이용하여 산화반응을 통해 기능기를 도입하였으며, 기능화 전 후의 복합체의 전기적 저항 및 피에조 저항효과를 측정하였다. 결과로부터 기능기 도입으로 인해 증가한 탄소나노소재의 구조적 결함이 전기적 저항의 증가를 야기하지만 동일한 변형에 대하여 저항 변화가 더 크게 나타나 변형에 따른 복합체 내부 전도성 입자의 유동성이 증가함을 확인하였고, 이를 통해 계면결합력이 증가함을 피에조 저항효과 관찰을 통해 확인할 수 있었다.