DOI QR코드

DOI QR Code

Intensity-modulated radiation therapy: a review with a physics perspective

  • Cho, Byungchul (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine)
  • 투고 : 2018.03.15
  • 심사 : 2018.03.20
  • 발행 : 2018.03.31

초록

Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

키워드

참고문헌

  1. Bortfeld T. IMRT: a review and preview. Phys Med Biol 2006;51:R363-79. https://doi.org/10.1088/0031-9155/51/13/R21
  2. Brahme A, Roos JE, Lax I. Solution of an integral equation encountered in rotation therapy. Phys Med Biol 1982;27:1221-9. https://doi.org/10.1088/0031-9155/27/10/002
  3. Rim CH, Lee J, Kim WC, et al. A survey of radiation therapy utilization in Korea from 2010 to 2016: focusing on use of intensity-modulated radiation therapy. J Korean Med Sci 2018;33:e67. https://doi.org/10.3346/jkms.2018.33.e67
  4. Mackie TR, Scrimger JW, Battista JJ, Elkhatib E. A convolution method for calculating dose in situations of lateral electronic disequilibrium. Medical Phys 1984;11:397.
  5. Ahnesjo A. Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 1989;16:577-92. https://doi.org/10.1118/1.596360
  6. Webb S. Historical perspective on IMRT. In: Palta JR, Mackie TR, Chen Z. Intensity-modulated radiation therapy: the state of the art. Madison, WI: Medical Physics Publishing; 2003. p. 1-23.
  7. Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 2001;51:880-914. https://doi.org/10.1016/S0360-3016(01)01749-7
  8. Brahme A. Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 1988;12:129-40. https://doi.org/10.1016/0167-8140(88)90167-3
  9. Webb S. Optimisation of conformal radiotherapy dose distributions by simulated annealing. Phys Med Biol 1989;34:1349-70. https://doi.org/10.1088/0031-9155/34/10/002
  10. Bortfeld T, Burkelbach J, Boesecke R, Schlegel W. Methods of image reconstruction from projections applied to conformation radiotherapy. Phys Med Biol 1990;35:1423-34. https://doi.org/10.1088/0031-9155/35/10/007
  11. Ling CC, Burman C, Chui CS, et al. Conformal radiation treatment of prostate cancer using inversely-planned intensity-modulated photon beams produced with dynamic multileaf collimation. Int J Radiat Oncol Biol Phys 1996;35:721-30.
  12. Spirou SV, Chui CS. A gradient inverse planning algorithm with dose-volume constraints. Med Phys 1998;25:321-33. https://doi.org/10.1118/1.598202
  13. Brahme A. Optimized radiation therapy based on radiobiological objectives. Semin Radiat Oncol 1999;9:35-47. https://doi.org/10.1016/S1053-4296(99)80053-8
  14. Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 1997;24:103-10. https://doi.org/10.1118/1.598063
  15. Brahme A. Multi leaf collimator (US Patent No. 4,672,212). Washington, DC: US Patent and Trademark Office; 1987.
  16. Carol MP. Peacock: a system for planning and rotational delivery of intensity-modulated fields. Int J Imaging Syst Technol 1995;6:56-61. https://doi.org/10.1002/ima.1850060108
  17. Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 1993;20:1709-19. https://doi.org/10.1118/1.596958
  18. Convery DJ, Rosenbloom ME. The generation of intensitymodulated fields for conformal radiotherapy by dynamic collimation. Phys Med Biol 1992;37:1359-74. https://doi.org/10.1088/0031-9155/37/6/012
  19. Svensson R, Kallman P, Brahme A. An analytical solution for the dynamic control of multileaf collimators. Phys Med Biol 1994;39:37-61. https://doi.org/10.1088/0031-9155/39/1/003
  20. Spirou SV, Chui CS. Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators. Med Phys 1994;21:1031-41. https://doi.org/10.1118/1.597345
  21. Stein J, Bortfeld T, Dorschel B, Schlegel W. Dynamic X-ray compensation for conformal radiotherapy by means of multileaf collimation. Radiother Oncol 1994;32:163-73. https://doi.org/10.1016/0167-8140(94)90103-1
  22. Cho BC, Park SW, Oh DH, Bae H. Quality assurance for intensity modulated radiation therapy. J Korean Soc Ther Radiol Oncol 2001;19:275-86.
  23. Park SW, Oh DH, Bae HS, Cho BC, Park JH, Han SH. Application of intensity modulated radiation therapy (IMRT) in prostate cancer. J Korean Soc Ther Radiol Oncol 2002;20:68-72.
  24. Shepard DM, Earl MA, Li XA, Naqvi S, Yu C. Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med Phys 2002;29:1007-18. https://doi.org/10.1118/1.1477415
  25. Earl MA, Shepard DM, Naqvi S, Li XA, Yu CX. Inverse planning for intensity-modulated arc therapy using direct aperture optimization. Phys Med Biol 2003;48:1075-89. https://doi.org/10.1088/0031-9155/48/8/309
  26. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008;35:310-7.
  27. Bichay T, Cao D, Orton CG. Point/counterpoint. Helical tomotherapy will ultimately replace linear accelerator based IMRT as the best way to deliver conformal radiotherapy. Med Phys 2008;35:1625-8. https://doi.org/10.1118/1.2885365
  28. Yu CX. Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 1995;40:1435-49. https://doi.org/10.1088/0031-9155/40/9/004
  29. Das IJ, Cheng CW, Chopra KL, Mitra RK, Srivastava SP, Glatstein E. Intensity-modulated radiation therapy dose prescription, recording, and delivery: patterns of variability among institutions and treatment planning systems. J Natl Cancer Inst 2008;100:300-7. https://doi.org/10.1093/jnci/djn020
  30. International Commission on Radiation Units and Measurements. ICRU Report 83: Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU 2010;10:NP.
  31. Freedman GM, Anderson PR, Li J, et al. Intensity modulated radiation therapy (IMRT) decreases acute skin toxicity for women receiving radiation for breast cancer. Am J Clin Oncol 2006;29:66-70. https://doi.org/10.1097/01.coc.0000197661.09628.03
  32. Lee N, Chuang C, Quivey JM, et al. Skin toxicity due to intensity-modulated radiotherapy for head-and-neck carcinoma. Int J Radiat Oncol Biol Phys 2002;53:630-7. https://doi.org/10.1016/S0360-3016(02)02756-6
  33. Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 2003;56:83-8. https://doi.org/10.1016/S0360-3016(03)00073-7
  34. Wang C, Iwamoto K, Low D, Chen A. (S004) Trend in second malignancy risk for head and neck cancer with increased utilization of IMRT: analysis of SEER database. Oncology (Williston Park) 2016;30 Suppl:216628.
  35. Journy NM, Morton LM, Kleinerman RA, Bekelman JE, Berrington de Gonzalez A. Second primary cancers after intensity-modulated vs 3-dimensional conformal radiation therapy for prostate cancer. JAMA Oncol 2016;2:1368-70. https://doi.org/10.1001/jamaoncol.2016.1368
  36. Chun SG, Hu C, Choy H, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-smallcell lung cancer: a secondary analysis of the NRG Oncology RTOG 0617 randomized clinical trial. J Clin Oncol 2017;35:56-62.
  37. Ibbott GS, Followill DS, Molineu HA, Lowenstein JR, Alvarez PE, Roll JE. Challenges in credentialing institutions and participants in advanced technology multi-institutional clinical trials. Int J Radiat Oncol Biol Phys 2008;71(1 Suppl):S71-5. https://doi.org/10.1016/j.ijrobp.2007.08.083
  38. Bogdanich W. Radiation offers new cures, and ways to do harm [Internet]. New York, NY: New York Times; 2010 [cited 2018 Mar 1]. Available from: http://www.nytimes.com/2010/01/24/health/24radiation.html.
  39. Ortiz Lopez P, Cosset JM, Dunscombe P, et al. ICRP publication 112. A report of preventing accidental exposures from new external beam radiation therapy technologies. Ann ICRP 2009;39:1-86.
  40. Moran JM, Dempsey M, Eisbruch A, et al. Safety considerations for IMRT: executive summary. Med Phys 2011;38:5067-72. https://doi.org/10.1118/1.3600524
  41. Abdel-Wahab M, Rosenblatt E, Holmberg O, Meghzifene A. Safety in radiation oncology: the role of international initiatives by the International Atomic Energy Agency. J Am Coll Radiol 2011;8:789-94. https://doi.org/10.1016/j.jacr.2011.07.014
  42. Hoopes DJ, Dicker AP, Eads NL, et al. RO-ILS: Radiation Oncology Incident Learning System: a report from the first year of experience. Pract Radiat Oncol 2015;5:312-8. https://doi.org/10.1016/j.prro.2015.06.009
  43. Siochi RA, Molineu A, Orton CG. Patient-specific QA for IMRT should be performed using software rather than hardware methods. Med Phys 2013;40:070601. https://doi.org/10.1118/1.4794929
  44. Pawlicki T, Yoo S, Court LE, et al. Moving from IMRT QA measurements toward independent computer calculations using control charts. Radiother Oncol 2008;89:330-7. https://doi.org/10.1016/j.radonc.2008.07.002
  45. Monz M, Kufer KH, Bortfeld TR, Thieke C. Pareto navigation: algorithmic foundation of interactive multi-criteria IMRT planning. Phys Med Biol 2008;53:985-98. https://doi.org/10.1088/0031-9155/53/4/011
  46. Ling CC, Humm J, Larson S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000;47:551-60. https://doi.org/10.1016/S0360-3016(00)00467-3
  47. Gutierrez AN, Westerly DC, Tome WA, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys 2007;69:589-97. https://doi.org/10.1016/j.ijrobp.2007.05.038
  48. Boyer AL, Desobry GE, Wells NH. Potential and limitations of invariant kernel conformal therapy. Med Phys 1991;18:703-12. https://doi.org/10.1118/1.596663
  49. Bortfeld TR, Kahler DL, Waldron TJ, Boyer AL. X-ray field compensation with multileaf collimators. Int J Radiat Oncol Biol Phys 1994;28:723-30. https://doi.org/10.1016/0360-3016(94)90200-3
  50. Carol M, Grant WH 3rd, Pavord D, et al. Initial clinical experience with the Peacock intensity modulation of a 3-D conformal radiation therapy system. Stereotact Funct Neurosurg 1996;66:30-4. https://doi.org/10.1159/000099664

피인용 문헌

  1. Dosimetric and Radiobiological Evaluation of Dose Volume Optimizer (DVO) and Progressive Resolution Optimizer (PRO) Algorithm against Photon Optimizer on IMRT and VMAT Plan for Prostate Cancer vol.29, pp.4, 2018, https://doi.org/10.14316/pmp.2018.29.4.106
  2. Impact of the Use of Homogeneous and Heterogeneous Phantoms in Pretreatment Verification for Volumetric Modulated Arc Radiotherapy vol.73, pp.7, 2018, https://doi.org/10.3938/jkps.73.1001
  3. Evaluation of the Dosimetric Accuracy of Brain Stereotactic Radiotherapy by Using a Hybrid Quality Assurance (QA) Toolkit vol.74, pp.3, 2018, https://doi.org/10.3938/jkps.74.292
  4. Evaluation of the plan delivery accuracy of intensity-modulated radiation therapy by texture analysis using fluence maps vol.59, pp.None, 2018, https://doi.org/10.1016/j.ejmp.2019.02.016
  5. Effect of Minimum Segment Width on Gamma Passing Rate Considering MLC Position Error for Volumetric Modulated Arc Therapy vol.74, pp.7, 2019, https://doi.org/10.3938/jkps.74.724
  6. Dose perturbation by metallic biliary stent in external beam radiotherapy of pancreato-biliary cancers vol.42, pp.3, 2018, https://doi.org/10.1007/s13246-019-00774-1
  7. Recent trends in intensity-modulated radiation therapy use in Korea vol.37, pp.4, 2019, https://doi.org/10.3857/roj.2019.00577
  8. Quantum‐inspired algorithm for radiotherapy planning optimization vol.47, pp.1, 2018, https://doi.org/10.1002/mp.13840
  9. Statistical Analysis of Treatment Planning Parameters for Prediction of Delivery Quality Assurance Failure for Helical Tomotherapy vol.19, pp.None, 2018, https://doi.org/10.1177/1533033820979692
  10. Dosimetric Comparison of Four Commercial Patient-Specific Quality Assurance Devices for Helical Tomotherapy vol.76, pp.3, 2018, https://doi.org/10.3938/jkps.76.257
  11. Three-dimensional dose reconstruction-based pretreatment dosimetric verification in volumetric modulated arc therapy for prostate cancer vol.38, pp.1, 2018, https://doi.org/10.3857/roj.2020.00066
  12. Characterization of a new scintillation imaging system for proton pencil beam dose rate measurements vol.65, pp.16, 2020, https://doi.org/10.1088/1361-6560/ab9452
  13. History of Radiation Therapy Technology vol.31, pp.3, 2018, https://doi.org/10.14316/pmp.2020.31.3.124
  14. Volumetric modulated arc therapy: a dosimetric comparison with dynamic IMRT and step-and-shoot IMRT vol.19, pp.4, 2018, https://doi.org/10.1017/s1460396919000815
  15. Validation of Monaco Treatment Planning System for Intensity-Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT®) on ELEKTA Infinity™ Linear Accelerator vol.297, pp.None, 2018, https://doi.org/10.1051/e3sconf/202129701014
  16. The Emergence of Artificial Intelligence within Radiation Oncology Treatment Planning vol.99, pp.2, 2018, https://doi.org/10.1159/000512172
  17. Insights into the theranostic value of precision medicine on advanced radiotherapy to breast cancer vol.18, pp.3, 2021, https://doi.org/10.7150/ijms.49544
  18. TriB-RT: Simultaneous optimization of photon, electron and proton beams vol.66, pp.4, 2018, https://doi.org/10.1088/1361-6560/ab936f
  19. External Validation of a Nomogram to Predict Survival and Benefit of Concurrent Chemoradiation for Stage II Nasopharyngeal Carcinoma vol.13, pp.17, 2021, https://doi.org/10.3390/cancers13174286
  20. Outcomes of primary radiotherapy with or without chemotherapy for advanced oral cavity squamous cell carcinoma: Systematic review vol.43, pp.10, 2018, https://doi.org/10.1002/hed.26779
  21. Comparison of three-dimensional patient-specific dosimetry systems with delivery errors: Toward a new synchronous measurement method vol.90, pp.None, 2021, https://doi.org/10.1016/j.ejmp.2021.09.013