DOI QR코드

DOI QR Code

Effect of Malonic Acid-Catalyzed Pretreatment on the Hydrolysis of Gracilaria verrucosa

Malonic acid를 이용한 전처리가 꼬시레기의 가수분해에 미치는 영향

  • Park, Mi-Ra (Department of Biotechnology, Pukyong National University) ;
  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
  • 박미라 (부경대학교 생물공학과) ;
  • 정귀택 (부경대학교 생물공학과)
  • Received : 2018.05.25
  • Accepted : 2018.06.29
  • Published : 2018.08.01

Abstract

In this study, the effects of malonic acid-catalyzed pretreatment on the subsequent enzymatic hydrolysis of red macro-algae Gracilaria verrucosa for production of biosugar (total reducing sugar) were investigated. In the hydrothermal pretreatment condition of 300 mM malonic acid, 1:20 solid-to-liquid ratio at $130^{\circ}C$ for 60 min, a 49.2% biosugar yield was achieved. Moreover, by subsequent enzymatic hydrolysis after pretreatment, maximum yield of 64.5% was achieved.

본 연구에서는 해양 거대조류 중 홍조류에 속하는 꼬시레기(Gracilaria verrucosa)로부터 malonic acid를 사용하여 열수 전처리 조건(전처리 온도, 촉매 농도, 고액비, 전처리 시간)에 따른 전처리와 효소가수분해를 통한 바이오슈거(환원당) 생산 가능성을 조사하였다. 300 mM malonic acid, 1:20 고액비 조건에서 $130^{\circ}C$에서 60분간 전처리를 수행하여 49.2%의 환원당 수율을 얻었다. 전처리 반응 후 이어진 효소 가수분해를 통하여 64.5%의 수율을 확보하였다.

Keywords

References

  1. Ra, C. H., Lee, H. J., Shin, M. K. and Kim, S. K., "Bioethanol Production from Seaweed Gelidium amansii for Separated Hydrolysis and Fermentation (SHF)," KSBB J., 28(5), 282-286(2013). https://doi.org/10.7841/ksbbj.2013.28.5.282
  2. Jeong, G. T. and Park, D. H., "Effect of Reaction Factor on Reducing Sugar Production from Enteromorpha intestinalis Using Solid Acid Catalyst," Korean Chem. Eng. Res., 53, 1-4(2015). https://doi.org/10.9713/kcer.2015.53.1.1
  3. Kim, A. R., Kim, D. H. and Jeong, G. T., "Optimum Reaction Condition of Enzymatic Hydrolysis for Production of Reducing Sugar from Enteromorpha Intestinalis," KSBB J., 30, 53-57(2015). https://doi.org/10.7841/ksbbj.2015.30.2.53
  4. Kim, D. H., Kim, A. R., Park, D. H. and Jeong, G. T., "Production of Total Reducing Sugar from Enteromorpha intestinalis Using Citrate Buffer Pretreatment and Subsequent Enzymatic Hydrolysis," Korean Chem. Eng. Res., 54, 70-74(2016). https://doi.org/10.9713/kcer.2015.54.1.70
  5. Pierobon, S. C., Cheng, X., Graham, P. J., Nguyen, B., Karakolis, E. G. and Sinton, D., "Emerging Microalgae Technology: a Review," Sustainable Energy Fuels, 2, 13-38(2018). https://doi.org/10.1039/C7SE00236J
  6. Odjadjare, E. C., Mutanda, T. and Olaniran, A. O., "Potential Biotechnological Application of Microalgae: a Critical Review," Critical Reviews in Biotechnology, 37, 37-52(2015).
  7. Meinita, M. D. N., Hong, Y. K. and Jeong, G. T., "Comparison of Sulfuric and Hydrochloric Acids as Catalysts in Hydrolysis of Kappaphycus alvarezii (cottonii)," Bioprocess Biosyst. Eng., 35, 123-128(2012). https://doi.org/10.1007/s00449-011-0609-9
  8. Ra, C. H., Choi, J. G., Kang, C. H., Sunwoo, I. Y., Jeong G. T. and Kim, S. K., "Thermal Acid Hydrolysis Pretreatment, Enzymatic Saccharification and Ethanol Fermentation from Red Seaweed, Gracilaria verrucosa," Micobiol. Biotechnol. Lett., 43, 9-15(2015). https://doi.org/10.4014/mbl.1410.10007
  9. Kwon, O. M., Kim, D. H., Kim, S. K. and Jeong, G. T., "Production of Sugars from Macro-algae Gracilaria verrucosa Using Combined Process of Citric Acid-catalyzed Pretreatment and Enzymatic Hydrolysis," Algal Res., 13, 293-297(2016). https://doi.org/10.1016/j.algal.2015.12.011
  10. Cho, Y. K., Kim, M. J. and Kim, S. K., "Ethanol Production form Seaweed, Enteromorpha intestinalis, by Sepearate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae," KSBB J., 28(6), 366-371(2013). https://doi.org/10.7841/ksbbj.2013.28.6.366
  11. Jeong, G. T. and Park, D. H., "Production of Sugars and Levulinic Acid from Marine Biomass Gelidium amansi," Appl. Biochem. Biotechnol., 161, 41-52(2010). https://doi.org/10.1007/s12010-009-8795-5
  12. Jeong, G. T., Ra, C. H., Hong, Y. K., Kim, J. K., Kong, I. S., Kim, S. K. and Park, D. H., "Conversion of Red-algae Gracillaria verrucosa to Sugars, Levulinic Acid and 5-hydroxymethylfurfural," Bioprocess Biosyst. Eng., 38, 207-217(2015). https://doi.org/10.1007/s00449-014-1259-5
  13. Kim, D. H., Lee, S. B. and Jeong, G. T., "Production of Reducing Sugar from Enteromorpha intestinalis by Hydrothermal and Enzymatic Hydrolysis," Bioresour. Technol., 161, 348-353(2014). https://doi.org/10.1016/j.biortech.2014.03.078
  14. Ra, C. H., Kim, Y. J., Lee, S. Y., Jeong, G. T. and Kim, S. K., "Effects of Galactose Adaptation in Yeast for Ethanol Fermentation from Red Seaweed, Gracilaria verrucosa," Bioprocess Biosyst. Eng., 38, 1715-1722(2015). https://doi.org/10.1007/s00449-015-1411-x
  15. Ayeni, A. O., Omoleye, J. A., Mudliar, S., Hymore, F. K. and Pandey, R. A., "Utilization of Lignocellulosic Waste for Ethanol Production: Enzymatic Digestibility and Fermentation of Pretreated Shea Tree Sawdust," Korean J. Chem. Eng., 31, 1180-1186(2014). https://doi.org/10.1007/s11814-014-0026-2
  16. American Chemical Society, "Molecule of the Week Archive : Malonic acid," https://www.acs.org/content/acs/en/molecule-of-the-week/archive/m/malonic-acid.html, March 21, 2017.
  17. Hu, H. C., Liu, Y. H., Li, B. L., Cui, Z. S. and Zhang, Z. H., "Deep Eutectic Solvent Based on Chlline Chloride and Malonic Acid as an Efficient and Reusable Catalytic System for One-pot Synthesis of Functionalized Pyrroles," RSC Adv., 5, 7720-7728(2015). https://doi.org/10.1039/C4RA13577F
  18. Miller, G. L., "Using Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar," Anal. Chem., 31, 426-428(1959). https://doi.org/10.1021/ac60147a030
  19. Jeong, G. T., Kim, S. K. and Park, D. H., "Application of Solid-acid Catalyst and Marine Macroalgae Gracilaria verrucosa to Production of Fermentable Sugars," Bioresour. Technol., 181, 1-6(2015). https://doi.org/10.1016/j.biortech.2015.01.038
  20. Tan, I. S., Lam, M. K. and Lee, K. T., "Hydrolysis of Macroalgae Using Heterogeneous Catalyst for Bioethanol Production," Carbohydr. Polym., 94, 561-566(2013). https://doi.org/10.1016/j.carbpol.2013.01.042