Browse > Article
http://dx.doi.org/10.9713/kcer.2018.56.4.542

Effect of Malonic Acid-Catalyzed Pretreatment on the Hydrolysis of Gracilaria verrucosa  

Park, Mi-Ra (Department of Biotechnology, Pukyong National University)
Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
Publication Information
Korean Chemical Engineering Research / v.56, no.4, 2018 , pp. 542-546 More about this Journal
Abstract
In this study, the effects of malonic acid-catalyzed pretreatment on the subsequent enzymatic hydrolysis of red macro-algae Gracilaria verrucosa for production of biosugar (total reducing sugar) were investigated. In the hydrothermal pretreatment condition of 300 mM malonic acid, 1:20 solid-to-liquid ratio at $130^{\circ}C$ for 60 min, a 49.2% biosugar yield was achieved. Moreover, by subsequent enzymatic hydrolysis after pretreatment, maximum yield of 64.5% was achieved.
Keywords
Gracilaria verrucosa; Malonic acid-catalyzed pretreatment; Subsequent enzymatic hydrolysis; Biosugar; Total reducing sugar;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ra, C. H., Lee, H. J., Shin, M. K. and Kim, S. K., "Bioethanol Production from Seaweed Gelidium amansii for Separated Hydrolysis and Fermentation (SHF)," KSBB J., 28(5), 282-286(2013).   DOI
2 Jeong, G. T. and Park, D. H., "Effect of Reaction Factor on Reducing Sugar Production from Enteromorpha intestinalis Using Solid Acid Catalyst," Korean Chem. Eng. Res., 53, 1-4(2015).   DOI
3 Kim, A. R., Kim, D. H. and Jeong, G. T., "Optimum Reaction Condition of Enzymatic Hydrolysis for Production of Reducing Sugar from Enteromorpha Intestinalis," KSBB J., 30, 53-57(2015).   DOI
4 Kim, D. H., Kim, A. R., Park, D. H. and Jeong, G. T., "Production of Total Reducing Sugar from Enteromorpha intestinalis Using Citrate Buffer Pretreatment and Subsequent Enzymatic Hydrolysis," Korean Chem. Eng. Res., 54, 70-74(2016).   DOI
5 Pierobon, S. C., Cheng, X., Graham, P. J., Nguyen, B., Karakolis, E. G. and Sinton, D., "Emerging Microalgae Technology: a Review," Sustainable Energy Fuels, 2, 13-38(2018).   DOI
6 Odjadjare, E. C., Mutanda, T. and Olaniran, A. O., "Potential Biotechnological Application of Microalgae: a Critical Review," Critical Reviews in Biotechnology, 37, 37-52(2015).
7 Meinita, M. D. N., Hong, Y. K. and Jeong, G. T., "Comparison of Sulfuric and Hydrochloric Acids as Catalysts in Hydrolysis of Kappaphycus alvarezii (cottonii)," Bioprocess Biosyst. Eng., 35, 123-128(2012).   DOI
8 Ra, C. H., Choi, J. G., Kang, C. H., Sunwoo, I. Y., Jeong G. T. and Kim, S. K., "Thermal Acid Hydrolysis Pretreatment, Enzymatic Saccharification and Ethanol Fermentation from Red Seaweed, Gracilaria verrucosa," Micobiol. Biotechnol. Lett., 43, 9-15(2015).   DOI
9 Kwon, O. M., Kim, D. H., Kim, S. K. and Jeong, G. T., "Production of Sugars from Macro-algae Gracilaria verrucosa Using Combined Process of Citric Acid-catalyzed Pretreatment and Enzymatic Hydrolysis," Algal Res., 13, 293-297(2016).   DOI
10 Cho, Y. K., Kim, M. J. and Kim, S. K., "Ethanol Production form Seaweed, Enteromorpha intestinalis, by Sepearate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) with Saccharomyces cerevisiae," KSBB J., 28(6), 366-371(2013).   DOI
11 Jeong, G. T. and Park, D. H., "Production of Sugars and Levulinic Acid from Marine Biomass Gelidium amansi," Appl. Biochem. Biotechnol., 161, 41-52(2010).   DOI
12 Jeong, G. T., Ra, C. H., Hong, Y. K., Kim, J. K., Kong, I. S., Kim, S. K. and Park, D. H., "Conversion of Red-algae Gracillaria verrucosa to Sugars, Levulinic Acid and 5-hydroxymethylfurfural," Bioprocess Biosyst. Eng., 38, 207-217(2015).   DOI
13 Kim, D. H., Lee, S. B. and Jeong, G. T., "Production of Reducing Sugar from Enteromorpha intestinalis by Hydrothermal and Enzymatic Hydrolysis," Bioresour. Technol., 161, 348-353(2014).   DOI
14 Ra, C. H., Kim, Y. J., Lee, S. Y., Jeong, G. T. and Kim, S. K., "Effects of Galactose Adaptation in Yeast for Ethanol Fermentation from Red Seaweed, Gracilaria verrucosa," Bioprocess Biosyst. Eng., 38, 1715-1722(2015).   DOI
15 Ayeni, A. O., Omoleye, J. A., Mudliar, S., Hymore, F. K. and Pandey, R. A., "Utilization of Lignocellulosic Waste for Ethanol Production: Enzymatic Digestibility and Fermentation of Pretreated Shea Tree Sawdust," Korean J. Chem. Eng., 31, 1180-1186(2014).   DOI
16 American Chemical Society, "Molecule of the Week Archive : Malonic acid," https://www.acs.org/content/acs/en/molecule-of-the-week/archive/m/malonic-acid.html, March 21, 2017.
17 Hu, H. C., Liu, Y. H., Li, B. L., Cui, Z. S. and Zhang, Z. H., "Deep Eutectic Solvent Based on Chlline Chloride and Malonic Acid as an Efficient and Reusable Catalytic System for One-pot Synthesis of Functionalized Pyrroles," RSC Adv., 5, 7720-7728(2015).   DOI
18 Tan, I. S., Lam, M. K. and Lee, K. T., "Hydrolysis of Macroalgae Using Heterogeneous Catalyst for Bioethanol Production," Carbohydr. Polym., 94, 561-566(2013).   DOI
19 Miller, G. L., "Using Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar," Anal. Chem., 31, 426-428(1959).   DOI
20 Jeong, G. T., Kim, S. K. and Park, D. H., "Application of Solid-acid Catalyst and Marine Macroalgae Gracilaria verrucosa to Production of Fermentable Sugars," Bioresour. Technol., 181, 1-6(2015).   DOI