DOI QR코드

DOI QR Code

Development of bias correction scheme for high resolution precipitation forecast

고해상도 강수량 수치예보에 대한 편의 보정 기법 개발

  • Uranchimeg, Sumiya (Department of Civil Engineering, Chonbuk National University) ;
  • Kim, Ji-Sung (Hydro Science and Engineering Research Institute, Korean Institute of Science and Technology) ;
  • Kim, Kyu-Ho (Hydro Science and Engineering Research Institute, Korean Institute of Science and Technology) ;
  • Kwon, Hyun-Han (Department of Civil Engineering, Chonbuk National University)
  • 오랑치맥 솜야 (전북대학교 공과대학 토목공학과) ;
  • 김지성 (한국건설기술연구원 수자원.하천연구소) ;
  • 김규호 (한국건설기술연구원 수자원.하천연구소) ;
  • 권현한 (전북대학교 공과대학 토목공학과)
  • Received : 2018.02.14
  • Accepted : 2018.03.30
  • Published : 2018.07.31

Abstract

An increase in heavy rainfall and floods have been observed over South Korea due to recent abnormal weather. In this perspective, the high-resolution weather forecasts have been widely used to facilitate flood management. However, these models are known to be biased due to initial conditions and topographical conditions in the process of model building. Theretofore, a bias correction scheme is largely applied for the practical use of the prediction to flood management. This study introduces a new mean field bias correction (MFBC) approach for the high-resolution numerical rainfall products, which is based on a Bayesian Kriging model to combine an interpolation technique and MFBC approach for spatial representation of the error. The results showed that the proposed method can reliably estimate the bias correction factor over ungauged area with an improvement in the reduction of errors. Moreover, it can be seen that the bias corrected rainfall forecasts could be used up to 72 hours ahead with a relatively high accuracy.

최근 이상기후로 인한 집중호우 발생빈도와 이로 인한 국지적인 홍수 피해가 증가하고 있다. 이러한 점에서 홍수피해 예방측면에서 수치예보 정보 활용이 요구되고 있다. 그러나 수치예보모델은 초기 조건 및 지형적 요인으로 인해 시공간적 편의가 존재하며 실시간 예측정보로 활용하기 전에 모형결과에 대한 편의보정이 요구된다. 본 연구에서는 관측지점 기준으로 편의 보정계수를 산정하는 과정에서 모든 관측소간의 상관성을 거리의 함수로 고려하여 미계측지점의 편의 보정계수를 공간적으로 확장할 수 있는 Bayesian Kriging 기반 MFBC 기법을 개발하였다. 본 연구에서 개발한 방법은 미계측 유역에 대해서도 보정계수를 효과적으로 추정하는 것이 확인되었으며, 비교적 고해상도로 72시간(3일) 정도까지 예측강우 정보를 활용하는 것이 가능할 것으로 판단된다.

Keywords

References

  1. Anagnostou, E. N., Krajewski, W. F., Seo, D. J., and Johnson, E. R. (1998). "Mean-field rainfall bias studies for WSR-88D." Journal of Hydrologic Engineering, Vol. 3, No. 3, pp. 149-159. https://doi.org/10.1061/(ASCE)1084-0699(1998)3:3(149)
  2. Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2014). Hierarchical modeling and analysis for spatial data. CRC Press.
  3. Berg, P., Feldmann, H., and Panitz, H. J. (2012). "Bias correction of high resolution regional climate model data." Journal of Hydrology, Vol. 448, pp. 80-92.
  4. Bordoy, R., and Burlando, P. (2013). "Bias correction of regional climate model simulations in a region of complex orography." Journal of Applied Meteorology and Climatology, Vol. 52, No. 1, pp. 82-101. https://doi.org/10.1175/JAMC-D-11-0149.1
  5. Borga, M. (2002). "Accuracy of radar rainfall estimates for streamflow simulation." Journal of Hydrology, Vol. 267, No. 1-2, pp. 26-39. https://doi.org/10.1016/S0022-1694(02)00137-3
  6. Buizza, R. (2010). "Horizontal resolution impact on short-and longrange forecast error." Quarterly Journal of the Royal Meteorological Society, Vol. 136, No. 649, pp. 1020-1035. https://doi.org/10.1002/qj.613
  7. Durai, V. R., and Bhradwaj, R. (2014). "Evaluation of statistical bias correction methods for numerical weather prediction model forecasts of maximum and minimum temperatures." Natural Hazards, Vol. 73, No. 3, pp. 1229-1254. https://doi.org/10.1007/s11069-014-1136-1
  8. Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian data analysis. Texts in Statistical Science Series.
  9. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian data analysis. Vol. 2. Boca Raton, FL: CRC press.
  10. Hay, L. E., Wilby, R. L., and Leavesley, G. H. (2000). "A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States." Journal of the American Water Resources Association, Vol. 36, No. 2, pp. 387-397. https://doi.org/10.1111/j.1752-1688.2000.tb04276.x
  11. Isaaks, E. H., and Srivastava, R. M. (2001). "An introduction to applied geostatistics. 1989. New York, USA: Oxford University Press. Jones DR, A taxonomy of global optimization methods based on response surfaces." Journal of Global Optimization, Vol. 23, pp. 345-383.
  12. Jakob Theme$\ss$l, M., Gobiet, A., and Leuprecht, A. (2011). "Empiricalstatistical downscaling and error correction of daily precipitation from regional climate models." International Journal of Climatology, Vol. 31, No. 10, pp. 1530-1544. https://doi.org/10.1002/joc.2168
  13. Jee, J. B., and Kim, S. (2017). "Sensitivity study on high-resolution WRF precipitation forecast for a heavy rainfall event." Atmosphere, Vol. 8, No. 6, p. 96. https://doi.org/10.3390/atmos8060096
  14. Kim, S. H., Kim, H. M., Kay, J. K., and Lee S. W. (2015). "Development and evaluation of the high resolution limited area ensemble prediction system in the Korea meteorological administration." Atmosphere, Vol. 25, No. 1, pp. 67-83. https://doi.org/10.14191/Atmos.2015.25.1.067
  15. Kwon, H. H., and Moon, Y. I. (2005). "A study of long-memory analysis of rainfall time series." Journal of The Korean Society of Civil Engineers, Vol. 25, No. 4B, pp. 237-246.
  16. Kwon, H. H., and Moon, Y. I. (2007). "Development of statistical seasonal rainfall model considering climate information and typhoon characteristics." Journal of The Korean Society of Civil Engineers, Vol. 27, No. 1B, pp. 45-52.
  17. Kwon, H. H., Brown, C., and Lall, U. (2008). "Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling." Geophysical Research Letters, Vol. 35, No. 5, pp. L05404. https://doi.org/10.1029/2007GL032220
  18. Lai, Y. S., Zhou, X. N., Utzinger, J., and Vounatsou, P. (2013). "Bayesian geostatistical modelling of soil-transmitted helminth survey data." Parasites & Vectors, Vol. 6, No. 1, p. 359. https://doi.org/10.1186/1756-3305-6-359
  19. Lee, D., Lee, J., and Kim, D. (2014). "Applicability of a space-time rainfall downscaling algorithm based on multifractal framework in modeling heavy rainfall events." Journal of Korea Water Resources Association, Vol. 47, No. 9, pp. 839-852. https://doi.org/10.3741/JKWRA.2014.47.9.839
  20. Lee, J., Jang, S., and Kim, S. (2015). "Evaluation of the WRF model in reproducing the spatio-temporal pattern of a heavy rainfall event." Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 5, pp. 255-265. https://doi.org/10.9798/KOSHAM.2015.15.5.255
  21. Lenderink, G., Buishand, A., and Deursen, W. V. (2007). "Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach." Hydrology and Earth System Sciences, Vol. 11, No. 3, pp. 1145-1159. https://doi.org/10.5194/hess-11-1145-2007
  22. Mittermaier, M., and Roberts, N. (2010). "Intercomparison of spatial forecast verification methods: identifying skillful spatial scales using the fractions skill score." Weather and Forecasting, Vol. 25, No. 1, pp. 343-354. https://doi.org/10.1175/2009WAF2222260.1
  23. Sandwell, D. T. (1987). "Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data." Geophysical Research Letters, Vol. 14, No. 2, pp. 139-142. https://doi.org/10.1029/GL014i002p00139
  24. Scholte, R. G., Gosoniu, L., Malone, J. B., Chammartin, F., Utzinger, J., and Vounatsou, P. (2014). "Predictive risk mapping of schistosomiasis in Brazil using Bayesian geostatistical models." Acta Tropica, Vol. 132, pp. 57-63. https://doi.org/10.1016/j.actatropica.2013.12.007
  25. Seo, D. J., Breidenbach, J. P., and Johnson, E. R. (1999). "Real-time estimation of mean field bias in radar rainfall data." Journal of Hydrology, Vol. 223, No. 3-4, pp. 131-147. https://doi.org/10.1016/S0022-1694(99)00106-7
  26. Siddique, R., Mejia, A., Brown, J., Reed, S., and Ahnert, P. (2015). "Verification of precipitation forecasts from two numerical weather prediction models in the Middle Atlantic Region of the USA: A precursory analysis to hydrologic forecasting." Journal of Hydrology, Vol. 529, pp. 1390-1406. https://doi.org/10.1016/j.jhydrol.2015.08.042
  27. Slater, H., and Michael, E. (2013). "Mapping, Bayesian geostatistical analysis and spatial prediction of lymphatic filariasis prevalence in Africa." PloS one, Vol. 8, No. 8, pp. e71574. https://doi.org/10.1371/journal.pone.0071574
  28. Son, C. Y., Jeong, Y. R., Han, S. H., and Cho, Y. H. (2017). "Assessment of predictability of categorical probabilistic long-term forecasts and its quantification for efficient water resources management." Journal of Korea Water Resources Association, Vol. 50, No. 8, pp. 563-577. https://doi.org/10.3741/JKWRA.2017.50.8.563
  29. Tobler, W. R. (1970). "A computer movie simulating urban growth in the Detroit region." Economic Geography, Vol. 46(sup1), pp. 234-240. https://doi.org/10.2307/143141
  30. Woodcock, F., and Engel, C. (2005). "Operational consensus forecasts." Weather and Forecasting, Vol. 20, No. 1, pp. 101-111. https://doi.org/10.1175/WAF-831.1
  31. Wu, M. C., and Lin, G. F. (2017). "The very short-term rainfall forecasting for a mountainous watershed by means of an ensemble numerical weather prediction system in Taiwan." Journal of Hydrology, Vol. 546, pp. 60-70. https://doi.org/10.1016/j.jhydrol.2017.01.012
  32. Yu, W. S., Yoon, S. S, Choi, M. K., and Jung, K. S. (2017). "Performance comparison of rainfall and flood forecasts using short-term numerical weather prediction data from Korea and Japan." Journal of Korea Water Resource Association, Vol. 50, No. 8, pp. 537-549 https://doi.org/10.3741/JKWRA.2017.50.8.537
  33. Yucel, I., Onen, A., Yilmaz, K. K., and Gochis, D. J. (2015). "Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall." Journal of Hydrology, Vol. 523, pp. 49-66. https://doi.org/10.1016/j.jhydrol.2015.01.042